Drivers and Constraints of Critical Materials Recycling: The Case of Indium
Abstract
:1. Introduction
Aim of the Study
2. The Main Uses of Indium
3. Drivers for Indium Recycling
3.1. Emerging Global Demands
3.2. Limitations in Primary Production
3.3. Unique Technical Properties of Indium
4. Constraints of Indium
4.1. High Dissipative Losses
4.2. Open Cycles
- Product design that make disassembly and material separation difficult or impossible;
- High mobility of products and multiple changes of ownership;
- Low awareness levels about loss of resources;
- Missing economic recycling incentives;
- Lack of appropriate recycling infrastructure for EOL management of complex products in many developing or emerging economies;
- In industrial countries, many goods such as small electronics are “hibernating” in drawers and closets;
- Recycling technologies have not kept pace with complex and diverse modern products.
4.3. Present Recovery Practices and Policies
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Commission. Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2010. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/system/files/ged/79%20report-b_en.pdf (accessed on 25 August 2016).
- European Commission. Report on Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Raw Materials; European Commission: Brussels, Belgium, 2014. Available online: http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations/en/renditions/pdf (accessed on 25 August 2016).
- Department for Environment, Food and Rural Affairs (DEFRA). Resource Security Action Plan. Making the Most of Valuable Materials; Department for Environment, Food and Rural Affairs: London, UK, 2012. Available online: https://www.gov.uk/government/publications/resource-security-action-plan-making-the-most-of-valuable-materials (accessed on 25 August 2016).
- U.S. Department of Energy (DoE). Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2011. Available online: http://energy.gov/epsa/initiatives/department-energy-s-critical-materials-strategy (accessed on 25 August 2016).
- Bleiwas, D.I. Byproduct Mineral Commodities Used for the Production of Photovoltaic Cells; Circular 1365; U.S. Geological Survey: Reston, VA, USA, 2010. Available online: http://pubs.usgs.gov/circ/1365/ (accessed on 30 August 2016).
- Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef]
- Chancerel, P.; Rotter, V.S.; Ueberschaar, M.; Marwede, M.; Nissen, N.F.; Lang, K. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Manag. Res. 2013, 31, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Peiró, L.T.; Méndez, G.V.; Ayres, R.U. Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply. Environ. Sci. Technol. 2013, 47, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Candelise, C.; Speirs, J.F.; Gross, R.J.K. Materials availability for thin film (TF) PV technologies development: A real concern? Renew. Sustain. Energy Rev. 2011, 15, 4972–4981. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 2013, 59, 260–273. [Google Scholar] [CrossRef]
- Alfantazi, A.M.; Moskalyk, R.R. Processing of indium: A review. Miner. Eng. 2003, 16, 687–694. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries, Indium 2015; U.S. Geological Survey: Reston, VA, USA, 2015. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/indium/mcs-2015-indiu.pdf (accessed on 30 August 2016).
- Kim, Y.C.; Lee, S.J.; Oh, I.-K.; Seo, S.; Kim, H.; Myoung, J.-M. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J. Alloys Compd. 2016, 688, 1108–1114. [Google Scholar] [CrossRef]
- Furuta, M.; Jiang, J.; Hung, M.P.; Toda, T.; Wang, D.; Tatsuoka, G. Suppression of negative gate bias and illumination stress degradation by fluorine-passivated In-Ga-Zn-O thin-film transistors. ECS J. Solid State Sci. Technol. 2016, 5, Q88–Q91. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries, Indium 2014; U.S. Geological Survey: Reston, VA, USA, 2014. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/indium/mcs-2014-indiu.pdf (accessed on 30 August 2016).
- European Commission. Energy Roadmap 2050 [COM(2011) 885]; European Commission: Brussels, Belgium, 2011. Available online: https://ec.europa.eu/energy/en/topics/energy-strategy/2050-energy-strategy (accessed on 30 August 2016).
- Zuser, A.; Rechberger, H. Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resour. Conserv. Recycl. 2011, 56, 56–65. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M.; Werner, T.T. The world’s by-product and critical metal resources part I: Uncertainties, current, reporting practices, implications and grounds for optimism. Ore Geol. Rev. 2016, in press. [Google Scholar] [CrossRef]
- Licht, C.; Peiró, L.T.; Villabla, G. Global substance flow analysis of gallium, germanium, and indium. J. Ind. Ecol. 2015, 19, 890–902. [Google Scholar] [CrossRef]
- Nassar, N.T.; Graedel, T.E.; Harper, E.M. By-product metals are technologically essential but have problematic supply. Sci. Adv. 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, L.; Nuss, P.; Reck, B.K.; Werner, T.T.; Graedel, T.E. Metal criticality determination for Australia, The US, and the planet—Comparing 2008 and 2012 results. Resources 2016, 5. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries, Indium 2016; U.S. Geological Survey: Reston, VA, USA, 2016. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/indium/mcs-2016-indiu.pdf (accessed on 30 August 2016).
- Duan, H.; Wang, J.; Liu, L.; Huang, Q.; Li, J. Rethinking China’s strategic mineral policy on indium: Implication for the flat screens and photovoltaic industries. Prog. Photovolt. Res. Appl. 2016, 24, 83–93. [Google Scholar] [CrossRef]
- Werner, T.T.; Mudd, G.M.; Jowitt, S.M. Indium: Key issues in assessing mineral resources and long-term supply from recycling. Appl. Earth Sci. 2015, 124, 213–226. [Google Scholar] [CrossRef]
- Phipps, G.; Mikolajczak, C.; Guckes, T. Indium and Gallium: long-term supply. Renew. Energy Focus 2008, 9, 56, 58–59. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Minerals Yearbook 2013, Indium; U.S. Geological Survey: Reston, VA, USA, 2015. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/indium/myb1-2013-indiu.pdf (accessed on 30 August 2016).
- Ayres, R.U. On the practical limits to substitution. Ecol. Econ. 2007, 61, 115–128. [Google Scholar] [CrossRef]
- Fthenakis, V. Sustainability metrics for extending thin-film photovoltaics to terawatt levels. Mater. Res. Soc. Bull. 2012, 37, 1–6. [Google Scholar] [CrossRef]
- Choi, C.H.; Cao, J.; Zhao, F. System dynamics modeling of indium material flows under wide deployment of clean energy technologies. Resour. Conserv. Recycl. 2016, 114, 59–71. [Google Scholar] [CrossRef]
- Schaubroeck, D.; De Smet, J.; Willems, W.; Cools, P.; De Geyter, N.; Morent, R.; De Smet, H.; Van Steenbeerge, G. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films. Appl. Surf. Sci. 2016, 376, 151–160. [Google Scholar] [CrossRef]
- Aleksandrova, M.; Videkov, V.; Ivanova, R.; Singh, A.K.; Thool, G.S. Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices. Mater. Lett. 2016, 174, 204–208. [Google Scholar] [CrossRef]
- Tiwari, B.; Hossain, M.J.; Bhattacharya, I. GaP/InGaAs/InGaSb triple junction current matched photovoltaic cell with optimized thickness and quantum efficiency. Sol. Energy 2016, 135, 618–624. [Google Scholar] [CrossRef]
- Hwang, S.-T.; Kim, S.; Cheun, H.; Lee, H.; Lee, B.; Hwang, T.; Lee, S.; Yoon, W.; Lee, H.-M.; Park, B. Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 2016, 155, 264–272. [Google Scholar] [CrossRef]
- Kong, Z.; Li, Y.; Lu, X.; Zhu, Y.; Jiang, L. Fabrication and characterization of flexible, transparent and self-standing Sb doped SnO2 electrospun nanofiber films. Chem. J. Chin. Univ. 2015, 36, 55–60. [Google Scholar]
- Hu, P.; Wu, G.; Zhang, Q.; Wang, H.; Li, Y. An antimony-doped tin oxide conductive network for flexible electronics based on electrospinning. J. Nanosci. Nanotechnol. 2016, 16, 5662–5667. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Reck, B.K. On the materials basis of modern society. Proc. Natl. Acad. Sci. USA 2015, 112, 6295–6300. [Google Scholar] [CrossRef] [PubMed]
- Wäger, P.A.; Lang, D.J.; Wittmer, D.; Bleischwitz, R.; Hagelüken, C. Towards a more sustainable use of scarce metals. A review of intervention options along the metals life cycle. GAIA Ecol. Perspect. Sci. Soc. 2012, 21, 300–309. [Google Scholar]
- Berger, W.; Simon, F.; Weimann, K.; Alsema, E.A. A novel approach for the recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 2010, 54, 711–718. [Google Scholar] [CrossRef]
- Giacchetta, G.; Leporini, M.; Marchetti, B. Evaluation of the environmental benefits of new high value process for the management of the end of life of thin film photovoltaic modules. J. Clean. Prod. 2013, 51, 214–224. [Google Scholar] [CrossRef]
- Marwede, M.; Berger, W.; Schlummer, M.; Mäurer, A.; Reller, A. Recycling paths for thin-film chalcogenide photovoltaic waste—Current feasible processes. Renew. Energy 2013, 55, 220–229. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, Q.; Liu, Z.; Zeng, L. Recovery of indium from used indium-tin oxide (ITO) targets. Hydrometallurgy 2011, 105, 207–212. [Google Scholar] [CrossRef]
- Virolainen, S.; Ibana, D.; Paatero, E. Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy 2011, 107, 56–61. [Google Scholar] [CrossRef]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.-S. Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy. Waste Manag. 2016, 57, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Rahman, I.M.M.; Egawa, Y.; Sawai, H.; Begum, Z.A.; Maki, T.; Mizutani, S. Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment. Microchem. J. 2013, 106, 289–294. [Google Scholar] [CrossRef]
- Rocchetti, L.; Beolchini, F. Recovery of valuable materials from end-of-life thin-film photovoltaic panels: Environmental impact assessment of different management options. J. Clean. Prod. 2015, 89, 59–64. [Google Scholar] [CrossRef]
- Silveira, A.V.M.; Fuchs, M.S.; Pinheiro, D.K.; Tanabe, E.H.; Bertuol, D.A. Recovery of indium from LCD screens of discarded cell phones. Waste Manag. 2015, 45, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Guo, Y.; Qiao, Q. Recovery of indium from scrap TFT-LCDs by solvent extraction. Procedia Environ. Sci. 2012, 16, 545–551. [Google Scholar] [CrossRef]
- Kral, U.; Kellner, K.; Brunner, P.H. Sustainable resource use requires “clean cycles” and safe “final sinks”. Sci. Total Environ. 2013, 461–462, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, T.; Gößling-Reisemann, S. Critical materials and dissipative losses: A screening study. Sci. Total Environ. 2013, 461–462, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, L.; Reck, B.K.; Nassar, N.T.; Graedel, T.E. Lost by design. Environ. Sci. Technol. 2015, 49, 9443–9451. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Daigo, I.; Matsuno, Y. Global substance flow analysis of indium. Mater. Trans. 2013, 54, 102–109. [Google Scholar] [CrossRef]
- McLellan, B.C.; Yamasue, E.; Tezuka, T.; Corder, G.; Golev, A.; Giurco, D. Critical minerals and energy—Impacts and limitations of moving to unconventional resources. Resources 2016, 5. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Recycling Rates of Metals—A Status Report; A Report of the Working Group on the Global Metals Flows to the International Resource Panel. United Nations Environment Programme (UNEP): Nairobi, Kenya, 2011. Available online: http://www.unep.org/resourcepanel/Publications/AreasofAssessment/Metals/InternationalResourcePanelWorkonGlobalMetal/tabid/132990/Default.aspx (accessed on 2 September 2016).
- Hagelüken, C. The challenge of open cycles—Barriers to a closed loop economy demonstrated for consumer electronics and cars. In Proceedings of the R’07 World Congress—Recovery of Materials and Energy for Resource Efficiency, Davos, Switzerland, 3–5 September 2007; Hilty, L.M., Edelmann, X., Ruf, A., Eds.; Empa Materials Science and Technology: St. Gallen, Switzerland, 2007. [Google Scholar]
- Eurostat. Waste Statistics—Electrical and Electronic Equipment. 2016. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics_-_electrical_and_electronic_equipment (accessed on 2 September 2016).
- Barr, S.; Gilg, A.W.; Ford, N.J. A conceptual framework for understanding and analysing attitudes towards household-waste management. Environ. Plan. A 2001, 33, 2025–2048. [Google Scholar] [CrossRef]
- Wagner, T.P. Examining the concept of convenient collection: An application to extended producer responsibility and product stewardship frameworks. Waste Manag. 2013, 33, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Saphores, J.M.; Ogunseitan, O.A.; Shapiro, A.A. Willingness to engage in a pro-environmental behavior: An analysis of e-waste recycling based on a national survey of U.S. households. Resour. Conserv. Recycl. 2012, 60, 49–63. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Yin, J.; Zhang, X. Willingness and behavior towards e-waste recycling for residents in Beijing city, China. J. Clean. Prod. 2011, 19, 977–984. [Google Scholar] [CrossRef]
- Yin, J.; Gao, Y.; Xu, H. Survey and analysis of consumers’ behaviour of waste mobile phone recycling in China. J. Clean. Prod. 2014, 65, 517–525. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Environmental Risks and Challenges of Anthropogenic Metal Flows and Cycles; A Report of the Working Group on the Global Metals Flows to the International Resource Panel. United Nations Environment Programme (UNEP): Nairobi, Kenya, 2013. Available online: http://www.unep.org/resourcepanel/Publications/AreasofAssessment/Metals/InternationalResourcePanelWorkonGlobalMetal/tabid/132990/Default.aspx (accessed on 2 September 2016).
- Ardente, F.; Mathieux, F.; Recchioni, M. Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements. Resour. Conserv. Recycl. 2014, 92, 158–171. [Google Scholar] [CrossRef]
- Chancerel, P. Substance Flow Analysis of the Recycling of Small Waste Electrical and Electronic Equipment—An Assessment of the Recovery of Gold and Palladium. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 4 December 2009. [Google Scholar]
- Velis, C.A.; Brunner, P.H. Recycling and resource efficiency: It is time for a change from quantity to quality. Waste Manag. Res. 2013, 31, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Dodson, J.R.; Hunt, A.J.; Parker, H.L.; Yang, Y.; Clark, J.H. Elemental sustainability: Towards the total recovery of scarce metals. Chem. Eng. Process. Process Intensif. 2012, 51, 69–78. [Google Scholar] [CrossRef]
- Birkmire, R.W.; McCandless, B.E. CdTe thin film technology: Leading thin film PV into the future. Curr. Opin. Solid State Mater. Sci. 2010, 14, 139–142. [Google Scholar] [CrossRef]
- Zimmermann, T.; Gößling-Reisemann, S. Recycling potentials of critical metals—Analyzing secondary flows from selected applications. Resources 2014, 3, 291–318. [Google Scholar] [CrossRef]
- Pongrácz, E. Critical minerals: Recycling vs. dissipative losses—The case of indium. In Proceedings of the 2014 Second Symposium on Urban Mining, Bergamo, Italy, 19–21 May 2014; Cossu, R., Ed.; CISA Publisher: Padova, Italy, 2014. [Google Scholar]
- Ayres, R.U.; Ayres, L.W.; Råde, I. The Life Cycle of Copper, Its Co-Products and By-Products; International Institute for Environment and Development: London, UK, 2002. Available online: http://pubs.iied.org/pdfs/G00740.pdf (accessed on 2 September 2016).
Raw Material | ||||
---|---|---|---|---|
Antimony | Cobalt | Germanium | Natural graphite | Light REEs 2 |
Beryllium | Coking Coal | Indium | Niobium | Heavy REEs 2 |
Borates | Fluorspar | Magnesite | PGMs 1 | Silicon metal |
Chromium | Gallium | Magnesium | Phosphate rock | Tungsten |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ylä-Mella, J.; Pongrácz, E. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources 2016, 5, 34. https://doi.org/10.3390/resources5040034
Ylä-Mella J, Pongrácz E. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources. 2016; 5(4):34. https://doi.org/10.3390/resources5040034
Chicago/Turabian StyleYlä-Mella, Jenni, and Eva Pongrácz. 2016. "Drivers and Constraints of Critical Materials Recycling: The Case of Indium" Resources 5, no. 4: 34. https://doi.org/10.3390/resources5040034
APA StyleYlä-Mella, J., & Pongrácz, E. (2016). Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources, 5(4), 34. https://doi.org/10.3390/resources5040034