Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review
Abstract
:1. Introduction
1.1. Methodology
1.2. Lithium
2. Lithium in the Environment
2.1. Lithium in Water
2.2. Lithium in Soil
2.3. Lithium Industrial Resources
2.3.1. Lithium in Brines
2.3.2. Lithium in Minerals
2.4. Lithium Mining and the Environment
3. Lithium Uses
3.1. Glass and Ceramics
3.2. Lithium as a Desiccant
3.3. Organolithium Chemistry
3.4. Lithium as a Lubricant
3.5. Lithium in Medicine
3.6. Lithium in Warfare
3.7. Metallurgy
3.8. Lithium Batteries
4. Lithium Recycling
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K. Criticality of metals and metalloids. Proc. Natl. Acad. Sci. USA 2015, 112, 4257–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Kang, Z. Lithium resources status and its Progress of development technology in China. Guangdong Trace Elem. Sci. 2007, 3, 001. [Google Scholar]
- Simon, B.; Ziemann, S.; Weil, M. Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe. Resour. Conserv. Recycl. 2015, 1, 300–310. [Google Scholar] [CrossRef]
- United Nations (UN). Environmental International Resource Panel. 2018. Available online: http://www.resourcepanel.org/ (accessed on 31 August 2018).
- Yaksic, A.; Tilton, J.E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185–194. [Google Scholar] [CrossRef]
- Martin, G.; Rentsch, L.; Hoeck, M.; Bertau, M. Lithium market research–global supply, future demand and price development. Energy Storage Mater. 2017, 6, 171–179. [Google Scholar] [CrossRef]
- Novo Litio. Powering the European Energiewende. Lithium from Europe for Europe. Sepeda Project, Portugal. Corporate Presentation. 2017. Available online: http://slipstreamresources.com/wp-content/uploads/2017/06/DKO-Presentation-and-name-change-to-Novo-Litio-170608.pdf (accessed on 29 August 2018).
- Mohr, S.H.; Mudd, G.M.; Giurco, D. Lithium resources and production: Critical assessment and global projections. Minerals 2012, 2, 65–84. [Google Scholar] [CrossRef]
- Kalevi, R.; Pasi, E.; Timo, A.; Tapio, H.; Niilo, K.; Janne, K.; Panu, L.; Tuomo, T. Quantitative Assessment of Undiscovered Resources in Lithium–Caesium–Tantalum Pegmatite Hosted Deposits in Finland; Bulletin 406, Research Report; Geological Survey of Finland: Espoo, Finland, 2018. [Google Scholar]
- Kavanagh, L.; Keohane, J.; Cleary, J.; Garcia Cabellos, G.; Lloyd, A. Lithium in the Natural Waters of the South East of Ireland. Int. J. Environ. Res. Public Health 2017, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Kozłowski, A. Lithium in rock-forming quartz in the northern contact zone of the Karkonosze massif, SW Poland. Polskie Towarzystwo Mineralogiczne (Prace Specjalne Miner. Soc. Poland), 2002; 20, 120–123. [Google Scholar]
- Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Ramos, V.; Guedes, A.; Noronha, F.; Botelho de Sousa, A.; Machado Leite, M.; Seltmann, R.; Dolgopolova, A. The Alvarrões-Gonçalo Li project: An example of sustainable lithium mining. Adv. Geosci. 2018, 45, 1–5. [Google Scholar] [CrossRef]
- Vine, J.D. Lithium Resources and Requirements by the Year 2000 (No. 1005); US Government Publishing Office: Washington, DC, USA, 1976.
- Kunasz, I.A. Lithium Resources. Industrial Minerals and Rocks; SME (Society Mining Metallurgy and Exploration): Englewood, CO, USA, 2006; pp. 599–614. [Google Scholar]
- Sheppard, S.M.F. The Cornubian batholith, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J. Geol. Soc. 1977, 133, 573–591. [Google Scholar] [CrossRef]
- Rumble, J. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781138561632. [Google Scholar]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Rivas, M.H.; Van Mierlo, J. Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- Fields, B.D. The primordial lithium problem. Annu. Rev. Nucl. Part. Sci. 2011, 61, 47–68. [Google Scholar] [CrossRef]
- Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride; Elsevier: New York, NY, USA, 2004. [Google Scholar]
- Poulin, V.; Serpico, P.D. Loophole to the universal photon spectrum in electromagnetic cascades and application to the cosmological lithium problem. Phys. Rev. Lett. 2015, 114, 091101. [Google Scholar] [CrossRef] [PubMed]
- Berzelius, J.J. Berzelius. In A History of Chemistry; Palgrave: London, UK, 1964; pp. 142–177. [Google Scholar]
- Weeks, M.E.; Larson, M.E. JA Arfwedson and his services to chemistry. J. Chem. Educ. 1937, 14, 403. [Google Scholar] [CrossRef]
- Weeks, M. Discovery of Elements; Kessinger Publishing: Whitefish, MT, USA, 2003; p. 124. [Google Scholar]
- Brande, W.T. A Manual of Chemistry; John W. Parker: Farnham, UK, 1841; Volume 1. [Google Scholar]
- Lenntech, B.V. Lithium and Water Reaction Mechanisms, Environmental Impact and Health Effects. 2018. Available online: http://www.lenntech.com/periodic/water/lithium/lithium-and-water.htm (accessed on 22 June 2018).
- Ayotte, J.D.; Gronberg, J.M.; Apodaca, L.E. Trace Elements and Radon in Groundwater across the United States, 1992–2003; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2011; p. 115.
- Klimas, A.; Mališauskas, A. Boron, fluoride, strontium and lithium anomalies in fresh groundwater of Lithuania. Geologija 2008, 50, 114–124. [Google Scholar] [CrossRef]
- De Vos, W.; Tarvainen, T.; Salminen, R.; Reeder, S.; De Vivo, B.; Demetriades, A.; Pirc, S.; Batista, M.J.; Marsina, K.; Ottesen, R.T.; et al. Geochemical Atlas of Europe. Part 2. Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications; Geological Survey of Finland: Espoo, Finland, 2006. [Google Scholar]
- Huh, Y.; Chan, L.H.; Zhang, L.; Edmond, J.M. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta 1998, 62, 2039–2051. [Google Scholar] [CrossRef]
- Emery, R.; Klopfer, D.C.; Skalski, J.R. Incipient Toxicity of Lithium to Freshwater Organisms Representing a Salmonid Habitat (No. PNL-3640); Battelle Pacific Northwest Labs: Richland, WA, USA, 1981. [Google Scholar]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities—A review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, L.; Barton, S.; Schull, W.; Razmilic, B.; Zumaeta, O.; Young, A.; Kamiya, Y.; Hoskins, J.; Ilgren, E. Environmental lithium exposure in the North of Chile—I. Natural water sources. Boil. Trace Element Res. 2012, 149, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Mughal, M.N.; Tanveer, M.; Gupta, D.; Abbas, G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ. Sci. Pollut. Res. 2017, 24, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Gaitan, E. Environmental Goitrogenesis; CRC Press: Boca Raton, FL, USA, 1989; 264p, ISBN 9780849367281. [Google Scholar]
- Mindat. The Mineralogy of Lithium. 2018. Available online: https://www.mindat.org/element/Lithium (accessed on 20 July 2018).
- Jeffersonlab. The Element Lithium. 2018. Available online: https://education.jlab.org/itselemental/ele003.html (accessed on 22 June 2018).
- WebElements. The Elements: Periodic Table Reference. 2018. Available online: https://www.webelements.com/ (accessed on 26 April 2018).
- Ryu, T.; Shin, J.; Ryu, J.; Park, I.; Hong, H.; Kim, B.G.; Chung, K.S. Preparation and characterization of a cylinder-type adsorbent for the recovery of lithium from seawater. Mater. Trans. 2013, 54, 1029–1033. [Google Scholar] [CrossRef]
- Peiró, L.T.; Méndez, G.V.; Ayres, R.U. Lithium: Sources, production, uses, and recovery outlook. J. Miner. Met. Mater. Soc. TMS 2013, 65, 986–996. [Google Scholar] [CrossRef]
- Fasel, D.; Tran, M.Q. Availability of lithium in the context of future D–T fusion reactors. Fusion Eng. Des. 2005, 75, 1163–1168. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Han, Y.; Kim, H.; Park, J. Millimetre-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chem. Eng. J. 2012, 210, 482–489. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.S.; Lee, J.C.; Kim, W.K.; Kim, S.B.; Cho, K.Y. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. J. Membr. Sci. 2008, 325, 503–508. [Google Scholar] [CrossRef]
- Chitrakar, R.; Kanoh, H.; Miyai, Y.; Ooi, K. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4. Ind. Eng. Chem. Res. 2001, 40, 2054–2058. [Google Scholar] [CrossRef]
- Takeuchi, T. Extraction of lithium from seawater with metallic aluminium. J. Nucl. Sci. Technol. 1980, 17, 922–928. [Google Scholar] [CrossRef]
- Tarascon, J.M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T. Preliminary studies of lithium recovery technology from seawater by electrodialysis using an ionic liquid membrane. Desalination 2013, 317, 11–16. [Google Scholar] [CrossRef]
- Nishihama, S.; Onishi, K.; Yoshizuka, K. The selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extr. Ion Exch. 2011, 29, 421–431. [Google Scholar] [CrossRef]
- Umeno, A.; Miyai, Y.; Takagi, N.; Chitrakar, R.; Sakane, K.; Ooi, K. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Ind. Eng. Chem. Res. 2002, 41, 4281–4287. [Google Scholar] [CrossRef]
- Miyai, Y.; Ooi, K.; Katoh, S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4. Sep. Sci. Technol. 1988, 23, 179–191. [Google Scholar] [CrossRef]
- Abe, M.; Chitrakar, R. Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (IV) antimonate cation exchanger. Hydrometallurgy 1987, 19, 117–128. [Google Scholar] [CrossRef]
- Kaneko, S.; Takahashi, W. Adsorption of lithium in seawater on alumina—Magnesia mixed-oxide gels. Colloids Surf. 1990, 47, 69–79. [Google Scholar] [CrossRef]
- Kitamura, T.; Wada, H. Properties of adsorbents composed of hydrous aluminium oxide, and its selective adsorption of lithium from seawater. Nippon. Kaisui Gakkai-Shi 1978, 32, 78–81. [Google Scholar]
- Ooi, K.; Miyai, Y.; Katoh, S. Recovery of lithium from seawater by manganese oxide adsorbent. Sep. Sci. Technol. 1986, 21, 755–766. [Google Scholar] [CrossRef]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Naumov, A.V.; Naumova, M.A. Modern state of the world lithium market. Russ. J. Non-Ferrous Met. 2010, 51, 324–330. [Google Scholar] [CrossRef]
- Yalamanchali, R. Lithium, an Emerging Environmental Contaminant, Is Mobile in the Soil-Plant System. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2012. [Google Scholar]
- FOREGS. Geochemical Atlas of Europe. 2018. Available online: http://weppi.gtk.fi/publ/foregsatlas/ (accessed on 20 July 2018).
- Kaye and Laby. Abundances of the Elements. 2018. Available online: http://www.kayelaby.npl.co.uk/chemistry/3_1/3_1_3.html (accessed on 12 September 2018).
- Mason, B. Principles of geochemistry. LWW 1952, 74, 262. [Google Scholar]
- Wilson, G.C.; Long, J.V.P. The distribution of lithium in some Cornish minerals: Ion microprobe measurements. Miner. Mag. 1983, 47, 191–199. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- British Geological Survey. (BGS), Minerals UK, Lithium Profile. 2016. Available online: http://www.bgs.ac.uk/mineralsUK/search/home.html (accessed on 19 June 2018).
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Wänke, H.; Dreibus, G.; Jagoutz, E. Mantle chemistry and accretion history of the Earth. In Archaean Geochemistry; Springer: Berlin/Heidelberg, Germany, 1984; pp. 1–24. [Google Scholar]
- Taylor, S.R.; McClennan, S.M. The Continental Crust; Its Composition and Evolution; Blackwell Science Publishers: Hoboken, NJ, USA, 1985. [Google Scholar]
- Kabata-Pendias, A. Soil–plant transfer of trace elements—An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Parker, A. Some trace element determinations on the new USGS silicate rock standards. Chem. Geol. 1969, 4, 445–449. [Google Scholar] [CrossRef]
- Horstman, E.L. The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochim. Cosmochim. Acta 1957, 12, 1–28. [Google Scholar] [CrossRef]
- Patterson, E.M. A petrochemical study of the Tertiary lavas of north-east Ireland. Geochim. Cosmochim. Acta 1952, 2, 283–299. [Google Scholar] [CrossRef]
- Nockolds, S.R.; Mitchell, R.L. The Geochemistry of some Caledonian Plutonic Rocks: A Study in the Relationship between the Major and Trace Elements of Igneous Rocks and their Minerals. Earth Environ. Sci. Trans. R. Soc. Edinb. 1947, 61, 533–575. [Google Scholar] [CrossRef]
- Strock, L.W. Zur Geochemie des Lithiums, von Lester, W. Strock; Vandenhoeck und Ruprecht: Göttingen, Germany, 1936. [Google Scholar]
- Davey, B.G.; Wheeler, R.C. Some aspects of the chemistry of lithium in soils. Plant Soil 1980, 57, 49–60. [Google Scholar] [CrossRef]
- Magalhães, J.R.; Wilcox, G.E. Research on Lithium-Phytological Metabolism and Recovery of Hypo-Lithium. Pesq. Agropec. Bras. Brasília 1990, 25, 1781–1787. [Google Scholar]
- Fay, D.; Kramers, G.; Zhang, C.; McGrath, D.; Grennan, E. Soil Geochemical Atlas of Ireland; Teagasc and Environmental Protection Agency: Dublin, Ireland, 2007; ISBN 1-84170-489-1. [Google Scholar]
- Cannon, H.L.; Harms, T.F.; Hamilton, J.C. Lithium in Unconsolidated Sediments and Plants of the Basin and Range Province, Southern California and Nevada (No. 918); US Government Publishing Office: Washington, DC, USA, 1975.
- Anderson, M.A.; Bertsch, P.M.; Miller, W.P. The distribution of lithium in selected soils and surface waters of the southeastern USA. Appl. Geochem. 1988, 3, 205–212. [Google Scholar] [CrossRef]
- Shacklette, H.T.; Boerngen, J.G. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States; U.S. Department of the Interior|U.S. Geological Survey: Reston, VA, USA, 1984. Available online: http://pubs.usgs.gov/pp/1270/ (accessed on 12 September 2018).
- Swaine, J.D. The Trace-Element Content of Soil. LWW 1956, 81, 156. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Scott, A.D.; Smith, S.J. Sources, amounts, and forms of alkali elements in soils. In Advances in Soil Science; Springer: New York, NY, USA, 1987; pp. 101–147. [Google Scholar]
- Steinkoenig, L.A. Lithium in Soils. Ind. Eng. Chem. 1915, 7, 425–426. [Google Scholar] [CrossRef]
- Ammari, T.G.; Al-Zu’bi, Y.; Abu-Baker, S.; Dababneh, B.; Tahboub, A. The occurrence of lithium in the environment of the Jordan Valley and its transfer into the food chain. Environ. Geochem. Health 2011, 33, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global lithium availability. J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Goonan, T.G. Lithium Use in Batteries (No. 1371); US Geological Survey: Reston, VA, USA, 2012.
- International Lithium Corp. (ILC) Newsroom. Avalonia Lithium Project. 2018. Available online: https://internationallithium.com/news/ (accessed on 18 April 2018).
- Barros, R. Petrogenesis of the Leinster LCT (Li-Cs-Ta) Pegmatite Belt in Southeast Ireland. Unpublished Ph.D. Thesis, University College Dublin, Dublin, Ireland, 2017. [Google Scholar]
- Risen, J. US Identifies Vast Mineral Riches in Afghanistan. The New York Times. 13 June 2010, pp. 1–4. Available online: http://www.campbellmgold.com/archive_blowing_in_the_wind/afghanistan_mineral_riches.pdf (accessed on 23 July 2018).
- Belt. Syadara-Hajigak Iron Ore. Minerals in Afghanistan; Afghanistan Geological Survey: Kabul, Afghanistan, 2014. [Google Scholar]
- CRIRSCO. Committee for Mineral Reserves International Reporting Standards, International Mineral Resources/Reserves Reporting Template. 2013. Available online: http://www.crirsco.com/template.asp (accessed on 22 August 2018).
- Meinert, L.D.; Robinson, G.R.; Nassar, N.T. Mineral resources: Reserves, peak production and the future. Resources 2016, 5, 14. [Google Scholar] [CrossRef]
- Harben, P.W. The Industrial Minerals Handbook: A Guide to Markets, Specifications, & Prices; Metal Bulletin: London, UK, 1999. [Google Scholar]
- Tahil, W. The Trouble with Lithium. Implications of Future PHEV Production for Lithium Demand: Meridian International Research. Martainville. 2007. Available online: http://www.meridian-int-res.com/Projects/Lithium_Problem_2.pdf (accessed on 24 July 2018).
- Evans, R.K. An Abundance of Lithium; World Lithium: Santiago, Chile, 2008. [Google Scholar]
- Clarke, G.M.; Harben, P.W. Lithium Availability Wall Map; Gerry Clarke: London, UK, 2009. [Google Scholar]
- Evans, R.K. The lithium-brine reserve conundrum. North. Min. 2010, 96, 2–6. [Google Scholar]
- Wadia, C.; Albertus, P.; Srinivasan, V. Resource constraints on the battery energy storage potential for grid and transportation applications. J. Power Sources 2011, 196, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Wanger, T.C. The Lithium future—Resources, recycling, and the environment. Conserv. Lett. 2011, 4, 202–206. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Ziemann, S.; Weil, M.; Schebek, L. Tracing the fate of lithium––The development of a material flow model. Resour. Conserv. Recycl. 2012, 63, 26–34. [Google Scholar] [CrossRef]
- Sverdrup, H.U. Modelling global extraction, supply, price and depletion of the extractable geological resources with the Lithium model. Resour. Conserv. Recycl. 2016, 114, 112–129. [Google Scholar] [CrossRef]
- Ober, J.A. Mineral Commodity Summaries 2018; US Geological Survey: Reston, VA, USA, 2018.
- Hao, H.; Liu, Z.; Zhao, F.; Geng, Y.; Sarkis, J. Material flow analysis of lithium in China. Resour. Policy 2017, 51, 100–106. [Google Scholar] [CrossRef]
- Wright, L. Lithium Dreams: Can Bolivia Become the Saudi Arabia of the Electric Car Era? New Yorker. 22 March 2010. Available online: https://www.newyorker.com/magazine/2010/03/22/lithium-dreams (accessed on 12 September 2018).
- Epstein, J.A.; Feist, E.M.; Zmora, J.; Marcus, Y. Extraction of lithium from the Dead Sea. Hydrometallurgy 1981, 6, 269–275. [Google Scholar] [CrossRef]
- Hano, T.; Matsumoto, M.; Ohtake, T.; Egashir, N.; Hori, F. Recovery of lithium from geothermal water by solvent extraction technique. Solvent Extr. Ion Exch. 1992, 10, 195–206. [Google Scholar] [CrossRef]
- Yanagase, K.; Yoshinaga, T.; Kawano, K.; Matsuoka, T. The recovery of lithium from geothermal water in the Hatchobaru area of Kyushu, Japan. Bull. Chem. Soc. Jpn. 1983, 56, 2490–2498. [Google Scholar] [CrossRef]
- Fouillac, C.; Michard, G. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 1981, 10, 55–70. [Google Scholar] [CrossRef]
- Collins, A. Geochemistry of Oilfield Waters; Elsevier: New York, NY, USA, 1975; Volume 1. [Google Scholar]
- Chan, L.H.; Starinsky, A.; Katz, A. The behaviour of lithium and its isotopes in oilfield brines evidence from the Heletz-Kokhav field, Israel. Geochim. Cosmochim. Acta 2002, 66, 615–623. [Google Scholar] [CrossRef]
- Dang, V.D.; Steinberg, M. Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant. In Lithium Needs and Resources, Proceedings of the Symposium Held in Corning, New NY, USA, 12–14 October 1977; Elsevier: New York, NY, USA, 1978; pp. 325–336. [Google Scholar]
- Colton, J.W. Recovery of lithium from complex silicates. In Handling and Uses of the Alkali Metals; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1957; Volume 19. [Google Scholar]
- Rodinia Lithium. 2018. Available online: http://www.rodinialithium.com/ (accessed on 20 July 2018).
- LSClithium 2018, Corporation. Available online: https://www.lsclithium.com/Home/default.aspx (accessed on 20 July 2018).
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420093681. [Google Scholar]
- Webmineral. Mineralogy Database. 2018. Available online: http://webmineral.com/ (accessed on 20 July 2018).
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Miner. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 2016, 258, 77–91. [Google Scholar] [CrossRef]
- Rosales, G.D.; del Carmen Ruiz, M.; Rodriguez, M.H. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy 2014, 147, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Q.; Chen, B.; Shi, X.; Liao, T. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy 2011, 109, 43–46. [Google Scholar] [CrossRef]
- Amarante, M.M.; De Sousa, A.B.; Leite, M.M. Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Miner. Eng. 1999, 12, 433–436. [Google Scholar] [CrossRef]
- Sitando, O.; Crouse, P.L. Processing of a Zimbabwean petalite to obtain lithium carbonate. Int. J. Miner. Process. 2012, 102, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.X.; Li, X.H.; Wang, Z.X.; Wang, J.X.; Guo, H.J.; Hu, Q.Y.; Peng, W.J.; Wu, X.F. Extraction of lithium from lepidolite using chlorination roasting–water leaching process. Trans. Nonferrous Met. Soc. China 2012, 22, 1753–1759. [Google Scholar] [CrossRef]
- Barbosa, L.I.; Valente, G.; Orosco, R.P.; Gonzalez, J.A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng. 2014, 56, 29–34. [Google Scholar] [CrossRef]
- Vu, H.; Bernardi, J.; Jandová, J.; Vaculíková, L.; Goliáš, V. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics. Int. J. Miner. Process. 2013, 123, 9–17. [Google Scholar] [CrossRef]
- Partington, G.A.; McNaughton, N.J.; Williams, I.S. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia. Econ. Geol. 1995, 90, 616–635. [Google Scholar] [CrossRef]
- Lithium Australia. 2018. Available online: https://lithium-au.com/ (accessed on 20 July 2018).
- Jamal, A.; Kumar, R.; Varshney, R.; Shirin, S.; Ratan, S.; Yadav, A.K. Economic rehabilitation of local population in the post-mining situation. In Proceedings of the Sixth International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2017) and SECOTOX Conference, Thessaloniki, Greece, 25–30 June 2017; pp. 876–885. [Google Scholar]
- Sapsford, D.J.; Bowell, R.J.; Dey, M.; Williams, K.P. Humidity cell tests for the prediction of acid rock drainage. Miner. Eng. 2009, 22, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Väyrynen, A.; Salminen, J. Lithium ion battery production. J. Chem. Thermodyn. 2012, 46, 80–85. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total. Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Phytomining of gold: A review. J. Geochem. Explor. 2013, 128, 42–50. [Google Scholar] [CrossRef]
- Sadiki, A.D.; Williams, D.T. A study on organotin levels in Canadian drinking water distributed through PVC pipesa. Chemosphere 1999, 38, 1541–1548. [Google Scholar] [CrossRef]
- Skjevrak, I.; Due, A.; Gjerstad, K.O.; Herikstad, H. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Water Res. 2003, 37, 1912–1920. [Google Scholar] [CrossRef]
- Hilson, G. Small-scale mining and its socio-economic impact in developing countries. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK; Boston, MA, USA, 2002; Volume 26, pp. 3–13. [Google Scholar]
- Ebensperger, A.; Maxwell, P.; Moscoso, C. The lithium industry: Its recent evolution and future prospects. Resour. Policy 2005, 30, 218–231. [Google Scholar] [CrossRef]
- Fenton, W.M.; Esmay, D.L.; Larsen, R.L.; Schroeder, H.H. Uses of Lithium Metal. In Handling and Uses of the Alkali Metals; American Chemical Society: Washington, DC, USA, 1957; Chapter 3; Volume 19, pp. 16–25. ISBN 9780841200203. [Google Scholar]
- Parker, G.L.; Smith, L.K.; Baxendale, I.R. Development of the industrial synthesis of vitamin A. Tetrahedron 2016, 72, 1645–1652. [Google Scholar] [CrossRef]
- Delgado, M.A.; Valencia, C.; Sánchez, M.C.; Franco, J.M.; Gallegos, C. Thermorheological behaviour of a lithium lubricating grease. Tribol. Lett. 2006, 23, 47–54. [Google Scholar] [CrossRef]
- Rittmeyer, P.; Wietelmann, U. Hydrides. In Ullmann’s Encyclopaedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Thompson, M.L. Mental Illness; Greenwood Publishing Group: Westport, CT, USA, 2007. [Google Scholar]
- Kaill, A. Lithium Turns Fifty-Let’s Celebrate a Great Australian; Child & Adolescent Mental Health Stateside Network Union Street: London, UK, 1999; pp. 69–75. [Google Scholar]
- Oruch, R.; Elderbi, M.A.; Khattab, H.A.; Pryme, I.F.; Lund, A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014, 740, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.M. Douglas County, Georgia: From Indian Trail to Interstate 20; WH Wolfe Associates, Historical Publications Division: Douglasville, GA, USA, 1987. [Google Scholar]
- Mauer, S.; Vergne, D.; Ghaemi, S.N. Standard and trace-dose lithium: A systematic review of dementia prevention and other behavioural benefits. Aust. N. Z. J. Psychiatry 2014, 48, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Watase, K.; Gatchel, J.R.; Sun, Y.; Emamian, E.; Atkinson, R.; Richman, R.; Mizusawa, H.; Orr, H.T.; Shaw, C.; Zoghbi, H.Y. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007, 4, e182. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, S.; Chuang, D.M. Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport 1998, 9, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Colp, R., Jr. History of Psychiatry. In Comprehensive Textbook of Psychiatry/VII; Sadock, B.J., Sadock, V.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; Volume II. [Google Scholar]
- Rush, A.J. Clinical diagnosis of mood disorders. Clin. Chem. 1988, 34, 813–821. [Google Scholar] [PubMed]
- Shorter, E.; Healy, D. A History of Psychiatry—From the Era of the Asylum to the Age of Prozac. J. Psychopharmacol. 1997, 11, 287. [Google Scholar]
- Schou, M.; Juel-Nielsen, N.; Strömgren, E.; Voldby, H. The treatment of manic psychoses by the administration of lithium salts. J. Neurol. Neurosurgery Psychiatry 1954, 17, 250. [Google Scholar] [CrossRef]
- Cade, J.F.J. Lithium salts in the treatment of psychotic excitement. Med. J. Aust. 1949, 2, 349–352. [Google Scholar] [PubMed]
- Timmer, R.T.; Sands, J.M. Lithium intoxication. J. Am. Soc. Nephrol. 1999, 10, 666–674. [Google Scholar] [PubMed]
- Forlenza, O.V.; de Paula, V.J.; Machado-Vieira, R.; Diniz, B.S.; Gattaz, W.F. Does lithium prevent Alzheimer’s disease? Drugs Ageing 2012, 29, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Terao, T.; Nakano, H.; Inoue, Y.; Okamoto, T.; Nakamura, J.; Iwata, N. Lithium and dementia: A preliminary study. Prog. Neuro-Psychopharmacol. Boil. Psychiatry 2006, 30, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Kessing, L.V.; Forman, J.L.; Andersen, P.K. Does lithium protect against dementia? Bipolar Disord. 2010, 12, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kszos, L.A.; Beauchamp, J.J.; Stewart, A.J. Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodium. Ecotoxicology 2003, 12, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.W. Does lithium depletion cause atherosclerotic heart-disease? Lancet 1969, 294, 1337–1339. [Google Scholar] [CrossRef]
- Dehpour, A.R.; Abdollahi, M.; Alghasi, H. Effects of lithium on rat parotid and submandibulary gland functions. Gen. Pharmacol. 1995, 26, 851–854. [Google Scholar] [CrossRef]
- Schou, M. Lithium Studies. 3. Distribution between Serum and Tissues. Basic Clin. Pharmacol. Toxicol. 1958, 15, 115–124. [Google Scholar] [CrossRef]
- Blüml, V.; Regier, M.D.; Hlavin, G.; Rockett, I.R.; König, F.; Vyssoki, B.; Bschor, T.; Kapusta, N.D. Lithium in the public water supply and suicide mortality in Texas. J. Psychiatr. Res. 2013, 47, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N.; Shrestha, K.P. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Boil. Trace Element Res. 1990, 25, 105–113. [Google Scholar] [CrossRef]
- Ohgami, H.; Terao, T.; Shiotsuki, I.; Ishii, N.; Iwata, N. Lithium levels in drinking water and risk of suicide. Br. J. Psychiatry 2009, 194, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, N.D.; Mossaheb, N.; Etzersdorfer, E.; Hlavin, G.; Thau, K.; Willeit, M.; Praschak-Rieder, N.; Sonneck, G.; Leithner-Dziubas, K. Lithium in drinking water and suicide mortality. Br. J. Psychiatry 2011, 198, 346–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabacs, N.; Memon, A.; Obinwa, T.; Stochl, J.; Perez, J. Lithium in drinking water and suicide rates across the East of England. Br. J. Psychiatry 2011, 198, 406–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarse, K.; Terao, T.; Tian, J.; Iwata, N.; Ishii, N.; Ristow, M. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur. J. Nutr. 2011, 50, 387–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, N.; Yasui-Furukori, N.; Ishii, N.; Iwata, N.; Terao, T. Lithium in tap water and suicide mortality in Japan. Int. J. Environ. Res. Public Health 2013, 10, 6044–6048. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.V. Lithium—The Misunderstood Mineral. Nutrition and Healing. 2012. Available online: http://www.psychologytoday.com/blog/evolutionary-psychiatry/201201/could-you-have-lithium-deficiency (accessed on 4 October 2014).
- Schrauzer, G.N.; Shrestha, K.P. Lithium in drinking water. Br. J. Psychiatry 2010, 196, 159–160. [Google Scholar] [CrossRef] [PubMed]
- König, D.; Baumgartner, J.; Blüml, V.; Heerlein, A.; Téllez, C.; Baus, N.; Kapusta, N.D. Impact of natural lithium resources on suicide mortality in Chile 2000–2009: A geographical analysis. Neuropsychiatrie Klinik Diagnostik Therapie Rehabilitation Organ Gesellschaft Osterreichischer Nervenarzte Psychiater 2017, 31, 70–76. [Google Scholar]
- Ishii, N.; Terao, T.; Araki, Y.; Kohno, K.; Mizokami, Y.; Shiotsuki, I.; Hatano, K.; Makino, M.; Kodama, K.; Iwata, N. Original Research Low Risk of Male Suicide and Lithium in Drinking Water. J. Clin. Psychiatry 2015, 76, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Lewitzka, U.; Severus, E.; Bauer, R.; Ritter, P.; Müller-Oerlinghausen, B.; Bauer, M. The suicide prevention effect of lithium: More than 20 years of evidence—A narrative review. Int. J. Bipolar Disord. 2015, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Pompili, M.; Vichi, M.; Dinelli, E.; Pycha, R.; Valera, P.; Albanese, S.; Lima, A.; De Vivo, B.; Cicchella, D.; Fiorillo, A.; et al. Relationships of local lithium concentrations in drinking water to regional suicide rates in Italy. World J. Boil. Psychiatry 2015, 16, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Giotakos, O.; Nisianakis, P.; Tsouvelas, G.; Giakalou, V.V. Lithium in the public water supply and suicide mortality in Greece. Boil. Trace Element Res. 2013, 156, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Helbich, M.; Leitner, M.; Kapusta, N.D. Geospatial examination of lithium in drinking water and suicide mortality. Int. J. Health Geogr. 2012, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, G.; Chaturvedi, S.K. Lithium in drinking water and food, and risk of suicide. Br. J. Psychiatry 2009, 195, 271. [Google Scholar] [CrossRef] [PubMed]
- Dawson, E.B.; Moore, T.D.; McGanity, W.J. The mathematical relationship between drinking water lithium and rainfall to mental hospital admission. Dis. Nerv. Syst. 1970, 31, 811–820. [Google Scholar] [PubMed]
- Pokorny, A.D.; Sheehan, D.; Atkinson, J. Drinking water lithium and mental hospital admissions. Dis. Nerv. Syst. 1972, 33, 649–652. [Google Scholar] [PubMed]
- Dawson, E.B.; Moore, T.D.; McGanity, W.J. Relationship of lithium metabolism to mental hospital admission and homicide. Dis. Nerv. Syst. 1972, 33, 546–556. [Google Scholar] [PubMed]
- Holden, D. The Indiscretion of Mark Oliphant: How an Australian Kick-started the American Atomic Bomb Project. Hist. Rec. Aust. Sci. 2018, 29, 28–35. [Google Scholar] [CrossRef]
- Parekh, P.P.; Semkow, T.M.; Torres, M.A.; Haines, D.K.; Cooper, J.M.; Rosenberg, P.M.; Kitto, M.E. Radioactivity in Trinitite six decades later. J. Environ. Radioact. 2006, 85, 103–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidnia, S.; Abdollahi, M. Concerns on the growing use of lithium: The pros and cons. Iran. Red Crescent Med. J. 2013, 15, 629. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Huff, V.N. Theoretical Performance of Lithium and Fluorine as a Rocket Propellant; Research memorandum (NACA RM ES1C01); National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory Cleveland: Cleveland, OH, USA, 1951. [Google Scholar]
- Chakravorty, C.R. Development of ultra-light magnesium-lithium alloys. Bull. Mater. Sci. 1994, 17, 733–745. [Google Scholar] [CrossRef]
- Prasad, N.E.; Gokhale, A.; Wanhill, R.J.H. (Eds.) Aluminum-Lithium Alloys: Processing, Properties, and Applications; Butterworth-Heineman: Oxford, UK, 2013. [Google Scholar]
- Emsley, J. Nature’s Building Blocks: An AZ Guide to the Elements; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Raghavan, R. Synthesis and Electrochemical Characterization of Silicon Clathrates as Anode Materials for Lithium Ion Batteries; Arizona State University: Tempe, AZ, USA, 2013. [Google Scholar]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 171–179. [Google Scholar]
- Goodenough, J.B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Inside EVs. Lithium Battery Pack Prices to Fall From $209 per kWh Now To <$100 by 2025. 2018. Available online: https://insideevs.com/lithium-battery-pack-prices-to-fall-from-209-per-kwh-now-to-100-by-2025/ (accessed on 18 April 2018).
- Clean Technical. Batteries Keep on Getting Cheaper. 2018. Available online: https://cleantechnica.com/2017/12/11/batteries-keep-getting-cheaper/ (accessed on 18 April 2018).
- Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 2014, 35, 183–193. [Google Scholar] [CrossRef]
- Patry, G.; Romagny, A.; Martinet, S.; Froelich, D. Cost modelling of lithium-ion battery cells for automotive applications. Energy Sci. Eng. 2015, 3, 71–82. [Google Scholar] [CrossRef]
- Metalary. Lithium Price. 2018. Available online: https://www.metalary.com/lithium-price/ (accessed on 17 April 2018).
- Nan, J.; Han, D.; Zuo, X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 2005, 152, 278–284. [Google Scholar] [CrossRef]
- Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2012.197.01.0038.01.ENG (accessed on 13 September 2018).
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: https://eur-lex.europa.eu/search.html?qid=1536837562150&text=2002/95/EC&scope=EURLEX&type=quick&lang=en (accessed on 13 September 2018).
- Richa, K.; Babbitt, C.W.; Nenadic, N.G.; Gaustad, G. Environmental trade-offs across cascading lithium-ion battery life cycles. Int. J. Life Cycle Assess. 2017, 22, 66–81. [Google Scholar] [CrossRef]
- Macquarie Research. Global Lithium Report, Macquarie Research. 2016. Available online: https://newagemetals.com/wp-content/uploads/MacquarieGlobalLithiumReport310516e245188.pdf (accessed on 25 September 2017).
- International Energy Agency IEH. Global EV Outlook 2017. Available online: https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf (accessed on 25 September 2017).
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- The Lithium Revolution. Documentary, Directed by Andreas Pichler and Julio Weiss. Gebrueder Beetz Film Production, 2012. Available online: http://www.polarstarfilms.com/en/d_the-lithium-revolution.php (accessed on 3 July 2018).
- Babbington, A. Social Conflict, Economic Development and Extractive Industry: Evidence from South America; Routledge: London, UK; New York, NY, USA, 2015. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavanagh, L.; Keohane, J.; Garcia Cabellos, G.; Lloyd, A.; Cleary, J. Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources 2018, 7, 57. https://doi.org/10.3390/resources7030057
Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources. 2018; 7(3):57. https://doi.org/10.3390/resources7030057
Chicago/Turabian StyleKavanagh, Laurence, Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd, and John Cleary. 2018. "Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review" Resources 7, no. 3: 57. https://doi.org/10.3390/resources7030057
APA StyleKavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., & Cleary, J. (2018). Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3), 57. https://doi.org/10.3390/resources7030057