Structural and Photoprotective Characteristics of Zn-Ti, Zn-Al, and Mg-Al Layered Double Hydroxides—A Comparative Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Synthesis of LDH
2.2.2. Characterisation
2.2.3. Optical Properties
2.2.4. Measurement of Photochemical Activity
2.2.5. In-Vitro SPF Measurement
3. Results and Discussion
3.1. Characterization of LDH
3.2. Optical Properties of LDH
3.3. Photochemical Properties of LDH
3.4. In Vitro Sun Protection Factor (SPF) Testing
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallaro, G.; Caruso, M.R.; Milioto, S.; Fakhrullin, R.; Lazzara, G. Keratin/alginate hybrid hydrogels filled with halloysite clay nanotubes for protective treatment of human hair. Int. J. Bio. Macromol. 2022, 222, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Thomas, S. Layered double hydroxides: Fundamentals to applications. In Layered Double Hydroxide Polymer Nanocomposites; Woodhead Publishing: Sawston, UK, 2020; pp. 1–76. [Google Scholar] [CrossRef]
- Duan, X.; Evans, D.G. Layered Double Hydroxides. In Structure and Bonding; Duan, X., Evans, D.G., Eds.; Springer: Beijing, China, 2005; pp. 3–70. [Google Scholar] [CrossRef]
- Shao, M.; Han, J.; Wei, M.; Evans, D.G.; Duan, X. The Synthesis of Hierarchical Zn-Ti Layered Double Hydroxide for Efficient Visible-Light Photocatalysis. Chem. Eng. J. 2011, 168, 519–524. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural Aspects of Layered Double Hydroxides BT—Layered Double Hydroxides; Duan, X., Evans, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–87. [Google Scholar] [CrossRef]
- De Roy, A.; Forano, C.; Besse, J.P. Layered Double Hydroxides: Synthesis and Post-Synthesis Modification. In Layered Double Hydroxides: Present and Future; Nova Science Publishers Inc.: New York, NY, USA, 2001; pp. 1–37. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered Double Hydroxides: A Brief Review from Fundamentals to Application as Evolving Biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Egambaram, O.P.; Pillai, S.K.; Lategan, M.; Ray, S.S. Nanostructured Zn-Ti Layered Double Hydroxides with Reduced Photocatalytic Activity for Sunscreen Application. J. Nanoparticle Res. 2019, 21, 53. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.V. A Review on Effect of Synthesis Conditions on the Formation of Layered Double Hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Starukh, G. Photocatalytically Enhanced Cationic Dye Removal with Zn-Al Layered Double Hydroxides. Nanoscale Res. Lett. 2017, 12, 391. [Google Scholar] [CrossRef]
- Gevers, B.R.; Naseem, S.; Sheppard, C.J.; Leuteritz, A.; Labuschagné, F.J.W.J. Modification of Layered Double Hydroxides Using First-Row Transi- Tion Metals for Superior UV-Vis-NIR Absorption and the Influence of the Synthesis Method Used. In ChemRxiv; Cambridge Open Engage: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Sahu, R.K.; Mohanta, B.S.; Das, N.N. Synthesis, Characterization and Photocatalytic Activity of Mixed Oxides Derived from ZnAlTi Ternary Layered Double Hydroxides. J. Phys. Chem. Solids 2013, 74, 1263–1270. [Google Scholar] [CrossRef]
- Seftel, E.M.; Popovici, E.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. The Influence of the Cationic Ratio on the Incorporation of Ti4+ in the Brucite-like Sheets of Layered Double Hydroxides. Microporous Mesoporous Mater 2008, 111, 12–17. [Google Scholar] [CrossRef]
- Fivenson, D.; Sabzevari, N.; Qiblawi, S.; Blitz, J.; Norton, B.B.; Norton, S.A. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int. J. Women’s Dermatol. 2021, 7, 45–69. [Google Scholar] [CrossRef]
- Wright, C.Y.; du Preez, D.J.; Millar, D.A.; Norval, M. The epidemiology of skin cancer and public health strategies for its prevention in southern Africa. Int. J. Environ. Res. Public Health 2020, 17, 1017. [Google Scholar] [CrossRef] [Green Version]
- Franco, J.G.; Ataide, J.A.; Ferreira, A.H.P.; Mazzola, P.G. Lamellar Compounds Intercalated with Anions with Solar Protection Function: A Review. J. Drug Deliv. Sci. Technol. 2020, 59, 101869. [Google Scholar] [CrossRef]
- Ng, W.K.; Martincigh, B.S. Applied Clay Science Review Article A Critical Review on Layered Double Hydroxides: Their Synthesis and Application in Sunscreen Formulations. Appl. Clay Sci. 2021, 208, 106095. [Google Scholar] [CrossRef]
- Pillai, S.K.; Kleyi, P.; De Beer, M.; Mudaly, P. Layered Double Hydroxides: An Advanced Encapsulation and Delivery System for Cosmetic Ingredients-an Overview. Appl. Clay Sci. 2020, 199, 105868. [Google Scholar] [CrossRef]
- Cunha, V.R.R.; de Souza, R.B.; da Fonseca Martins, A.M.C.R.P.; Koh, I.H.J.; Constantino, V.R.L. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: Histological and microcirculation evaluation. Sci. Rep. 2016, 6, 30547. [Google Scholar] [CrossRef] [Green Version]
- Rojas, R.; Mosconi, G.; Zanin, J.P.; Gil, G.A. Layered double hydroxide applications in biomedical implants. Appl. Clay Sci. 2022, 224, 106514. [Google Scholar] [CrossRef]
- Kim, H.J.; Lagarrigue, P.; Oh, J.M.; Soulié, J.; Salles, F.; Cazalbou, S.; Drouet, C. Biocompatible MgFeCO3 Layered Double Hydroxide (LDH) for Bone Regeneration—Low-Temperature Processing through Cold Sintering and Freeze-Casting. Bioengineering 2023, 10, 734. [Google Scholar] [CrossRef]
- Li, P.; Huang, Y.; Fu, C.; Jiang, S.X.; Peng, W.; Jia, Y.; Peng, H.; Zhang, P.; Manzie, N.; Mitter, N.; et al. Eco-friendly biomolecule-nanomaterial hybrids as next-generation agrochemicals for topical delivery. EcoMat 2021, 3, e12132. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, B.; Su, J.; Han, J. Bioinspired Design of LDH-Based Mobile Building Materials with Enhanced Mechanical and Ultraviolet-Shielding Performance. Macromol. Mater. Eng. 2019, 304, 1900276. [Google Scholar] [CrossRef]
- Shi, Y.; Gui, Z.; Yu, B.; Yuen, R.K.K.; Wang, B.; Hu, Y. Graphite-like Carbon Nitride and Functionalized Layered Double Hydroxide Filled Polypropylene-Grafted Maleic Anhydride Nanocomposites: Comparison in Flame Retardancy, and Thermal, Mechanical and UV-Shielding Properties. Compos. Part B Eng. 2015, 79, 277–284. [Google Scholar] [CrossRef]
- Cao, T.; Xu, K.; Chen, G.; Guo, C. Poly (Ethylene Terephthalate) Nanocomposites with a Strong UV-Shielding Function Using UV-Absorber Intercalated Layered Double Hydroxides. Rsc. Adv. 2013, 3, 6282–6285. [Google Scholar] [CrossRef]
- Rives, V. Layered Double Hydroxides: Present and Future. Appl. Clay Sci. 2001, 22, 75–76. [Google Scholar]
- Ahmed, A.A.A.; Talib, Z.A.; Bin Hussein, M.Z.; Zakaria, A. Zn-Al Layered Double Hydroxide Prepared at Different Molar Ratios: Preparation, Characterization, Optical and Dielectric Properties. J. Solid State Chem. 2012, 191, 271–278. [Google Scholar] [CrossRef]
- Costantino, U.; Marmottini, F.; Nocchetti, M.; Vivani, R. New Synthetic Routes to Hydrotalcite-Like Compounds−Characterisation and Properties of the Obtained Materials. Eur. J. Inorg. Chem. 1998, 10, 1439–1446. [Google Scholar] [CrossRef]
- Seftel, E.M.; Popovici, E.; Mertens, M.; De Witte, K.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. Zn-Al Layered Double Hydroxides: Synthesis, Characterization and Photocatalytic Application. Microporous Mesoporous Mater. 2008, 113, 296–304. [Google Scholar] [CrossRef]
- Wang, M.; Bao, W.J.; Wang, J.; Wang, K.; Xu, J.J.; Chen, H.Y.; Xia, X.H. A Green Approach to the Synthesis of Novel “Desert Rose Stone”-like Nanobiocatalytic System with Excellent Enzyme Activity and Stability. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Naseem, S.; Gevers, B.; Boldt, R.; Labuschagné, F.J.W.J.; Leuteritz, A. Comparison of Transition Metal (Fe, Co, Ni, Cu, and Zn) Containing Tri-Metal Layered Double Hydroxides (LDHs) Prepared by Urea Hydrolysis. RSC Adv. 2019, 9, 3030–3040. [Google Scholar] [CrossRef]
- Gevers, B.R.; Naseem, S.; Leuteritz, A.; Labuschagné, F.J.W.J. Comparison of Nano-Structured Transition Metal Modified Tri-Metal MgMAl-LDHs (M = Fe, Zn, Cu, Ni, Co) Prepared Using Co-Precipitation. RSC Adv. 2019, 9, 28262–28275. [Google Scholar] [CrossRef]
- Saber, O.; Tagaya, H. New Layered Double Hydroxide, Zn-Ti LDH: Preparation and Intercalation Reactions. J. Incl. Phenom. Macrocycl. Chem. 2003, 45, 109–116. [Google Scholar] [CrossRef]
- Xu, Z.P.; Braterman, P.S. Synthesis, Structure and Morphology of Organic Layered Double Hydroxide (LDH) Hybrids: Comparison between Aliphatic Anions and Their Oxygenated Analogs. Appl. Clay Sci. 2010, 48, 235–242. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Frost, R.L. Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites. J. Solid State Chem. 1999, 146, 505–515. [Google Scholar] [CrossRef]
- Sakr, A.A.E.; Zaki, T.; Elgabry, O.; Ebiad, M.A.; El-Sabagh, S.M.; Emara, M.M. Mg-Zn-Al LDH: Influence of Intercalated Anions on CO2 Removal from Natural Gas. Appl. Clay Sci. 2018, 160, 263–269. [Google Scholar] [CrossRef]
- Benício, L.P.F.; Silva, R.A.; Lopes, J.A.; Eulálio, D.; dos Santos, R.M.M.; De Aquino, L.A.; Vergütz, L.; Novais, R.F.; Da Costa, L.M.; Pinto, F.G.; et al. Layered Double Hydroxides: Nanomaterials for Applications in Agriculture. Rev. Bras. Cienc. Do Solo 2015, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Olanrewaju, J.; Newalkar, B.L.; Mancino, C.; Komarneni, S. Simplified Synthesis of Nitrate from of Layered Double Hydroxide. Mater. Lett. 2000, 45, 307. [Google Scholar] [CrossRef]
- Seftel, E.M.; Niarchos, M.; Vordos, N.; Nolan, J.W.; Mertens, M.; Mitropoulos, A.C.; Vansant, E.F.; Cool, P. LDH and TiO2/LDH-Type Nanocomposite Systems: A Systematic Study on Structural Characteristics. Microporous Mesoporous Mater. 2015, 203, 208–215. [Google Scholar] [CrossRef]
- Rives, V. Study of Layered Double Hydroxides by Thermal Methods. In Layered Double Hydroxides: Present and Future; Nova Science Publishers Inc.: New York, NY, USA, 2001; pp. 127–151. [Google Scholar]
- Rives, V. Characterisation of Layered Double Hydroxides and Their Decomposition Products. Mater. Chem. Phys. 2002, 75, 19–25. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Thermogravimetric Analysis of Selected Layered Double Hydroxides. J. Therm. Anal. Calorim. 2013, 112, 649–657. [Google Scholar] [CrossRef]
- Saber, O.; Tagaya, H. Preparation of a New Nano-Layered Materials and Organic-Inorganic Nano-Hybrid Materials, Zn-Si LDH. J. Porous Mater. 2009, 16, 81–89. [Google Scholar] [CrossRef]
- Manaia, E.B.; Kaminski, R.C.K.; Corrêa, M.A.; Chiavacci, L.A. Inorganic UV Filters. Braz. J. Pharm. Sci. 2013, 49, 201–209. [Google Scholar] [CrossRef]
- Egambaram, O.P.; Kesavan Pillai, S.; Sinha Ray, S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol. 2019, 96, 779–797. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Shan, J.; Ju, Y.; Aikens, P.; Prud’homme, R.K. Nanoparticles as Delivery Vehicles for Sunscreen Agents. Colloids Surf. A Physicochem. Eng. Asp. 2012, 396, 122–129. [Google Scholar] [CrossRef]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorg. Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Xu, S.-M.; Pan, T.; Dou, Y.-B.; Yan, H.; Zhang, S.-T.; Ning, F.-Y.; Shi, W.-Y.; Wei, M. Theoretical and Experimental Study on MII MIII-Layered Double Hydroxides as Efficient Photocatalysts toward Oxygen Evolution from Water. J. Phys. Chem. C 2015, 119, 18823–18834. [Google Scholar] [CrossRef]
- Starukh, G.; Rozovik, O.; Oranska, O. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media. Nanoscale Res. Lett. 2016, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Mahjoubi, F.Z.; Khalidi, A.; Abdennouri, M.; Barka, N. Zn–Al Layered Double Hydroxides Intercalated with Carbonate, Nitrate, Chloride and Sulphate Ions: Synthesis, Characterisation and Dye Removal Properties. J. Taibah Univ. Sci. 2017, 11, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Starukh, G.N. Zn-Al Layered Double Hydroxides for Adsorption and Photocatalytic Removal of Cationic Dye. Chem. Phys. Technol. Surf. 2016, 7, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Smijs, T.G.; Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Tayade, R.J.; Natarajan, T.S.; Bajaj, H.C. Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes. Ind. Eng. Chem. Res. 2009, 48, 10262–10267. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, A. Doped Metal Oxide (ZnO) and Photocatalysis: A Review. J. Pak. Inst. Chem. Eng. J. 2012, 40, 11–19. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, J.; Li, C.; Yu, J.; Jiang, X.; Zheng, Y.; Hu, W.; Jiao, F. Enhanced Photocatalytic Degradation of Rhodamine B, Methylene Blue and 4-Nitrophenol under Visible Light Irradiation Using TiO2/MgZnAl Layered Double Hydroxide. J. Mater. Sci. Mater. Electron. 2018, 29, 7002–7014. [Google Scholar] [CrossRef]
- Sayer, R.M.; Staniland, P.; Stansfield, G.L. Importance of Broad Spectrum Inorganic Sunscreens in Preventing UV and Near-UV Induced Free Radical Damage to the Skin. Cosmet. Sci. Technol. 2013, 95–102. [Google Scholar]
- Pelizzo, M.; Zattra, E.; Nicolosi, P.; Peserico, A.; Garoli, D.; Alaibac, M. In Vitro Evaluation of Sunscreens: An Update for the Clinicians. ISRN Dermatol. 2012, 2012, 352135. [Google Scholar] [CrossRef] [Green Version]
- Santos Caetano, J.P.; Abarca, A.P.; Guerato, M.; Guerra, L.; Schalka, S.; Perez Simão, D.C.; Vila, R. SPF and UVA-PF Sunscreen Evaluation: Are There Good Correlations among Results Obtained in Vivo, in Vitro and in a Theoretical Sunscreen Simulator? A Real-Life Exercise. Int. J. Cosmet. Sci. 2016, 38, 576–580. [Google Scholar] [CrossRef]
- Nur, I.; Abdul, F.; Siti, A.; Sarijo, H.; Sakina, F.; Rajidi, M.; Yahaya, R.; Musa, M. Synthesis and Characterization of Novel 4-Aminobenzoate Interleaved with Zinc Layered Hydroxide for Potential Sunscreen Application. J. Porous Mater. 2019, 26, 717–722. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Zhou, W.; Wang, X. Fabrication of Intercalated p-Aminobenzoic Acid into Zn-Ti Layered Double Hydroxide and Its Application as UV Absorbent. Chin. Chem. Lett. 2016, 27, 1495–1499. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Ma, X.; Wang, X.; Zhou, W.; Bai, D. Synthesis and Characterization of Zn-Ti Layered Double Hydroxide Intercalated with Cinnamic Acid for Cosmetic Application. J. Phys. Chem. Solids 2017, 107, 62–67. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Nkwentsha, N.; Mlunguza, N.Y. Physicochemical Characterization and In Vitro Evaluation of the Sun Protection Factor of Cosmetic Products Made from Natural Clay Material. S. Afr. J. Chem. 2017, 70, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.; Manzoor, S.; Saeed, S.; Muhammad, S.; Tariq, M.; Akhtar, Z.; Saira, N.; Yasmin, G. Investigation of Calcium Silicate as a Natural Clay-Based Sunblock: Formulation and Characterization. Photodermat. Photoimmun. Photomed. 2021, 37, 39–48. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Zn-Ti LDH | 77.02 ± 1.58 | 0.13 ± 0.003 | 6.75 ± 0.29 |
Zn-Al LDH | 36.61 ± 1.66 | 0.12 ± 0.01 | 23.49 ± 4.43 |
Mg-Al LDH | 15.73 ± 1.30 | 0.08 ± 0.002 | 20.62 ± 0.59 |
Sample | Band Gap (eV) |
---|---|
Mg-Al LDH | 4.75 |
Zn-Al LDH | 4.5 |
Zn-Ti LDH | 3.72 |
TiO2 | 3.23 |
ZnO | 3.27 |
Zn-Ti LDH (2 wt%) | Zn-Al LDH (2 wt%) | |||||
---|---|---|---|---|---|---|
SPF (Mean) | UVA-PF | UVA-PF | SPF (Mean) | UVA-PF | UVA-PF | |
(Pre-Irradiation) | (Pre-Irradiation) | |||||
Plate 1 | 6.31 | 2.84 | 2.59 | 4.35 | 3.85 | 3.74 |
Plate 2 | 6.23 | 2.84 | 2.60 | 4.37 | 3.86 | 3.76 |
Plate 3 | 5.96 | 2.85 | 2.72 | 4.24 | 3.87 | 3.87 |
Plate 4 | 6.11 | 2.84 | 2.67 | 4.18 | 3.89 | 3.90 |
Average | 6.15 ± 0.132 | 2.84 ± 0.004 | 2.65 ± 0.053 | 4.29 ± 0.078 | 3.87 ± 0.015 | 3.82 ± 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egambaram, O.P.; Kesavan Pillai, S.; Ray, S.S.; Goosen, M. Structural and Photoprotective Characteristics of Zn-Ti, Zn-Al, and Mg-Al Layered Double Hydroxides—A Comparative Study. Cosmetics 2023, 10, 100. https://doi.org/10.3390/cosmetics10040100
Egambaram OP, Kesavan Pillai S, Ray SS, Goosen M. Structural and Photoprotective Characteristics of Zn-Ti, Zn-Al, and Mg-Al Layered Double Hydroxides—A Comparative Study. Cosmetics. 2023; 10(4):100. https://doi.org/10.3390/cosmetics10040100
Chicago/Turabian StyleEgambaram, Orielia Pria, Sreejarani Kesavan Pillai, Suprakas Sinha Ray, and Marlize Goosen. 2023. "Structural and Photoprotective Characteristics of Zn-Ti, Zn-Al, and Mg-Al Layered Double Hydroxides—A Comparative Study" Cosmetics 10, no. 4: 100. https://doi.org/10.3390/cosmetics10040100
APA StyleEgambaram, O. P., Kesavan Pillai, S., Ray, S. S., & Goosen, M. (2023). Structural and Photoprotective Characteristics of Zn-Ti, Zn-Al, and Mg-Al Layered Double Hydroxides—A Comparative Study. Cosmetics, 10(4), 100. https://doi.org/10.3390/cosmetics10040100