The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics
Abstract
:1. Introduction
2. Clays x Clay Minerals
2.1. Types of Clay
2.2. Structure and Composition
- (a)
- (b)
- 2:1-type minerals swell in contact with polar solvents, creating structured systems with interesting rheological properties [6]. They lead typically to gels with pseudoplastic behavior. After hydration, a tridimensional net is built leading to sharply higher viscosity. When tension is applied, most of the structure breaks as shear occurs [13].
3. Demands for Cosmetic Use
- Fulfill chemical requirements—stability, purity, and chemical inertia.
- Fulfill physical requirements—texture, water content, particle size (must present fine granulometry), and be pH compatible with the region of application.
- Fulfill toxicological requirements—zero or extremely low toxicity, safe, and microbiological purity. The high absorption capacity of clays may cause them to accumulate potentially toxic trace elements, which must be verified. Clays must be submitted to the decontamination process assuring microbiological safety before incorporating into cosmetics/dermocosmetics.
- (a)
- High surface area (which contributes to adequate rheology).
- (b)
- High absorption and adsorption capacity.
- (c)
- High cationic exchange capability.
- (d)
- Favorable colloidal dimension.
- (e)
- High refraction index and heat retention.
- (f)
- Low hardness (must be soft to apply on skin).
- (g)
- Astringency.
- (h)
- Low toxicity.
- (i)
- Chemical inertia.
- (j)
- Pleasant or neutral colors.
Toxicological and Safety Aspects of Clays and Clay Minerals
4. Important Considerations When Formulating Clay-Containing Cosmetics
5. Properties in Cosmetic Products for Skincare and Haircare
5.1. Minerals
5.2. Clays
- Treatment for scalps affected with dandruff and seborrhea—after cleaning the scalp with a neutral shampoo, apply a hair mask on the scalp composed of 10 mL of the same shampoo, 3 drops of peppermint (Mentha piperita), 3 of lemon (Citrus limon), and 3 of petitgrain (Citrus aurantium) essential oils and 5 g of yellow clay thoroughly mixed; then, cover with plastic film and leave for 20 min. Rinse completely after that and apply hair conditioning [23].
- Protocol for chemically treated hair (bleached or straightened, for instance)—after cleaning the scalp with a neutral shampoo, apply a hair mask on the scalp composed of 10 mL of the same shampoo, 3 drops of lavender (Lavandula angustifolia), 3 of chamomile (Chamomilla recutita), and 3 of copaiba (Copaifera langsdorffii) essential oils and 5 g of white clay thoroughly mixed; then, cover with plastic film and leave for 20 min. Rinse completely after that and apply hair conditioning [23].
6. Clays Used as Formulation Starting Materials
7. Clays Used as Delivery Systems
8. Clays and Clay Minerals Used in Spas and Aesthetic Medicine
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rautureau, M.; Figueiredo Gomes, C.D.S.; Liewig, N.; Katouzian-Safadi, M. Clays and Health; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-42883-3. [Google Scholar]
- Carretero, M.I. Clay Minerals and Their Beneficial Effects upon Human Health. A Review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Chapter 11.5 Clays and Human Health. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 717–741. [Google Scholar]
- Nardy, B.C. Caracterização Do Material Pelítico Utilizado Para Fins Terapêuticos, Cosméticos e de Higiene Pessoal No Vale Do Capão, Chapada Diamantina, Bahia. Trab. Conclusão Curso 2018, 81. [Google Scholar]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C. Pharmaceutical and Cosmetic Applications of Clays. Interface Sci. Technol. 2004, 1, 267–289. [Google Scholar] [CrossRef]
- National Health Surveillance Agency (ANVISA). Resolution of the Collegiate Board of Directors RDC Nb. 7, of February 10th, 2015; National Health Surveillance Agency (ANVISA): Brasília, Brazil, 2015. [Google Scholar]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of Clay Minerals in Semisolid Health Care and Therapeutic Products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Costa, J.T.C. Preparação de Protetores Solares Com Argila: Análise Da Eficácia In Vitro Da Propriedade Fotoprotetora. Master’s Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2015; 83p. [Google Scholar]
- Velasco, M.V.R.; Zague, V.; Dario, M.F.; Nishikawa, D.O.; Pinto, C.A.S.O.; Almeida, M.; Henrique, G.; Trossini, G.; Carlos, A.; Coelho, V.; et al. Characterization and Short-Term Clinical Study of Clay Facial Mask. J. Of. Basic. Appl. Pharm. Sci. 2016, 37, 1–6. [Google Scholar]
- Silva-Valenzuela, M.d.G.; Chambi-Peralta, M.M.; Sayeg, I.J.; de Souza Carvalho, F.M.; Wang, S.H.; Valenzuela-Díaz, F.R. Enrichment of Clay from Vitoria Da Conquista (Brazil) for Applications in Cosmetics. Appl. Clay Sci. 2018, 155, 111–119. [Google Scholar] [CrossRef]
- Daré, R.G.; Estanqueiro, M.; Amaral, M.H.D.A.R.; Truiti, M.D.C.T. Significância Dos Argilominerais Em Produtos Cosméticos. Rev. De Cienc. Farm. Basica E Apl. 2015, 36, 59–67. [Google Scholar]
- Bastos, C.M.; Rocha, F. Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use. Geosciences 2022, 12, 453. [Google Scholar] [CrossRef]
- Mattioli, M.; Giardini, L.; Roselli, C.; Desideri, D. Mineralogical Characterization of Commercial Clays Used in Cosmetics and Possible Risk for Health. Appl. Clay Sci. 2016, 119, 449–454. [Google Scholar] [CrossRef]
- Matike, D.M.E.; Ekosse, G.I.E.; Ngole, V.M. Physico-Chemical Properties of Clayey Soils Used Traditionally for Cosmetics in Eastern Cape, South Africa. Int. J. Phys. Sci. 2011, 6, 7557–7566. [Google Scholar] [CrossRef]
- Ng’etich, W.K.; Mwangi, E.M.; Kiptoo, J.; Digo, C.A.; Ombito, J.O. In Vitro Determination of Sun Protection Factor on Clays Used for Cosmetic Purposes in Kenya. Chem. Mater. Res. 2014, 6, 25–31. [Google Scholar]
- Silva, M.L.D.G. da Obtenção e Caracterização de Argila Piauiense Paligorsquita (Atapulgita) Organofilizada Para Uso Em Formulações Cosméticas. Master’s Thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2011; p. 106. [Google Scholar]
- Daneluz, J.; da Silva Favero, J.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Mexias, A.S.; Bergmann, C.P. The Influence of Different Concentrations of a Natural Clay Material as Active Principle in Cosmetic Formulations. Mater. Res. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Balduino, A.P.Z. Estudo Da Caracterização e Composição de Argilas de Uso Cosmético. Master’s Thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2016; p. 55. [Google Scholar]
- Zague, V. Desenvolvimento e Avaliação Da Estabilidade Física e Físico-Química de Máscaras Faciais Argilosas. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2007; p. 160. [Google Scholar]
- Favero, J.D.S.; Parisotto-Peterle, J.; Weiss-Angeli, V.; Brandalise, R.N.; Gomes, L.B.; Bergmann, C.P.; dos Santos, V. Physical and Chemical Characterization and Method for the Decontamination of Clays for Application in Cosmetics. Appl. Clay Sci. 2016, 124–125, 252–259. [Google Scholar] [CrossRef]
- Damazio, M.G.; Makino, R.D.F.L. Terapia Capilar: Uma Abordagem Inter e Multidisciplinar, 1st ed.; RED Publicações: São Paulo, Brazil, 2017; ISBN 978-85-69225-04-1. [Google Scholar]
- Chura, S.S.D.; Almeida, O.P.; Cardoso, L.M.N.A.; Pereira, L.E.A.; De Amorim, M.L.L.; Cardoso, V.M.; Carneiro, G. Formulation Development and Characterization of Face Masks Containing Natural Pink Clay. Ens. E Ciência C Biológicas Agrárias E Da Saúde 2022, 26, 135–140. [Google Scholar] [CrossRef]
- Wargala, E.; Sławska, M.; Zalewska, A.; Toporowska, M. Health Effects of Dyes, Minerals, and Vitamins Used in Cosmetics. Women 2021, 1, 223–237. [Google Scholar] [CrossRef]
- Da Rocha, M.C.; Galdino, T.; Trigueiro, P.; Honorio, L.M.C.; Barbosa, R.D.M.; Carrasco, S.M.; Silva-Filho, E.C.; Osajima, J.A.; Viseras, C. Clays as Vehicles for Drug Photostability. Pharmaceutics 2022, 14, 796. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay Minerals: Properties and Applications to Dermocosmetic Products and Perspectives of Natural Raw Materials for Therapeutic Purposes—A Review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef]
- Cosmetic Ingredient Review (CIR) Amended Safety Assessment of Naturally-Sourced Clays as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/Clays_0.pdf (accessed on 15 December 2023).
- Babahoum, N.; Ould Hamou, M. Characterization and Purification of Algerian Natural Bentonite for Pharmaceutical and Cosmetic Applications. BMC Chem. 2021, 15, 50. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Gomes, C.; Rautureau, M.; Poustis, J.; Gomes, J. Benefits and Risks of Clays and Clay Minerals to Human Health from Ancestral to Current Times: A Synoptic Overview. Clays Clay Miner. 2021, 69, 612–632. [Google Scholar] [CrossRef]
- Maisanaba, S.; Pichardo, S.; Puerto, M.; Gutiérrez-Praena, D.; Cameán, A.M.; Jos, A. Toxicological Evaluation of Clay Minerals and Derived Nanocomposites: A Review. Environ. Res. 2015, 138, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńczak, A.; Feliczak-Guzik, A.; Nowak, I. Mesoporous Silica Films with Accessible Pore Structures on Iron Oxide. Dye. Pigment. 2016, 124, 27–34. [Google Scholar] [CrossRef]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The Use of Hydroxyapatite Toothpaste to Prevent Dental Caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Nery, É.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A Short Review of Alternative Ingredients and Technologies of Inorganic UV Filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Misiņa, S.M.; Tretjakova, R.; Kodors, S.; Zavorins, A. Lake Zeiļu Clay Application Induced Changes in Human Skin Hydration, Elasticity, Transepidermal Water Loss and PH in Healthy Individuals. Cosmetics 2020, 7, 51. [Google Scholar] [CrossRef]
- Meier, L.; Stange, R.; Michalsen, A.; Uehleke, B. Clay Jojoba Oil Facial Mask for Lesioned Skin and Mild Acne-Results of a Prospective, Observational Pilot Study. Forsch. Komplementarmed 2012, 19, 75–79. [Google Scholar] [CrossRef]
- Clay, N.; Columbia, B.; Behroozian, S. Broad-Spectrum Antimicrobial and Antibiofilm Activity of a Natural Clay Mineral from British Columbia, Canada. Ther. Prev. a. 2020, 11, 1–14. [Google Scholar]
- Gomes, C.F.; Gomes, J.H.; da Silva, E.F. Bacteriostatic and Bactericidal Clays: An Overview. Environ. Geochem. Health 2020, 42, 3507–3527. [Google Scholar] [CrossRef] [PubMed]
- De Limas, J.R.; Duarte, R.; Moser, D.K. A Argiloterapia: Uma Nova Alternativa Para Tratamentos Contra Seborreia, Dermatite Seborreica e Caspa 2018, 17. Available online: https://siaibib01.univali.br/pdf/Jaqueline%20Rosa%20de%20Limas%20e%20Rosimeri%20Duarte.pdf (accessed on 28 November 2023).
- Dušenkova, I.; Kusiņa, I.; Mālers, J.; Bērziņa-Cimdiņa, L. Application of Latvian Illite Clays in Cosmetic Products with Sun Protection Ability. In Environment. Technology. Resources, Proceedings of the 10th International Scientific and Practical Conference; Riga Technical University: Riga, Latvia, 2015; Volume 1, pp. 28–32. [Google Scholar] [CrossRef]
- Hoang-Minh, T.; Le, T.L.; Kasbohm, J.; Gieré, R. UV-Protection Characteristics of Some Clays. Appl. Clay Sci. 2010, 48, 349–357. [Google Scholar] [CrossRef]
- Favero, J.D.S.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Veras, D.G.; Dani, N.; Mexias, A.S.; Bergmann, C.P. Evaluation and Characterization of Melo Bentonite Clay for Cosmetic Applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
- Ashby, N.P.; Binks, B.P. Pickering Emulsions Stabilised by Laponite Clay Particles. Phys. Chem. Chem. Phys. 2000, 2, 5640–5646. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, X.; Xiao, Y.; Hu, L.; Eggersdorfer, M.; Chen, D.; Yang, Z.; Weitz, D.A. Pickering Emulsions Stabilized by Colloidal Surfactants: Role of Solid Particles. Particuology 2022, 64, 153–163. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Lu, J.; Tian, X.; Jin, Y.; Chen, J.; Walters, K.B.; Ding, S. A PH Responsive Pickering Emulsion Stabilized by Fibrous Palygorskite Particles. Appl. Clay Sci. 2014, 102, 113–120. [Google Scholar] [CrossRef]
- Kpogbemabou, D.; Lecomte-Nana, G.; Aimable, A.; Bienia, M.; Niknam, V.; Carrion, C. Oil-in-Water Pickering Emulsions Stabilized by Phyllosilicates at High Solid Content. Colloids Surf. A Physicochem. Eng. Asp. 2014, 463, 85–92. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Panchal, A.; Fakhrullina, G.; Fakhrullin, R.; Lvov, Y. Self-Assembly of Clay Nanotubes on Hair Surface for Medical and Cosmetic Formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef]
- Saad, H.; Ayed, A.; Srasra, M.; Attia, S.; Srasra, E.; Charrier-El Bouhtoury, F.; Tabbene, O. New Trends in Clay-Based Nanohybrid Applications: Essential Oil Encapsulation Strategies to Improve Their Biological Activity. In Nanoclay-Recent Advances, New Perspectives and Applications; IntechOpen: London, UK, 2022; pp. 1–55. [Google Scholar] [CrossRef]
- Carretero, M.I. Clays in Pelotherapy. A Review. Part I: Mineralogy, Chemistry, Physical and Physicochemical Properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and Pelotherapy: Historical Evolution, Classification and Glossary. Appl. Clay Sci. 2013, 75–76, 28–38. [Google Scholar] [CrossRef]
Color | Present Elements/ Composition [18,20] | Cosmetic Use |
---|---|---|
Yellow | Rich in silicon dioxide | Rejuvenation, skin purification, and hydration [18,20] Prevention of bacterial infection on skin, cleansing, sunscreen, and body beautification [16] Antiaging, remineralizing, illuminating, hydration, nourishing, cleansing, tonifying, eliminates residues [4] Tensor effect, activates microcirculation, and contributes to ionic balance [23] |
Beige | Rich in silicon, aluminum, titanium; low in Fe and hydrated aluminum silicate content | Astringent, purifying (adsorbs oil), and moisturizing [20] Tissue protection, purification, astringent, hydrating, remineralizing, skin whitening, and oiliness absorption [18] Body beautification [16] |
White | Hydrated aluminum silicate, aluminum, sulfur, iron, boron, potassium, and calcium [18] | Skin whitening, moisturizing, and helps in oil removal [20] Whitening, oiliness absorption, and hydration [18] Anti-acne, whitening, use in skincare preparations [15] Cleansing, sunscreen, and body beautification [16] Wrinkle smoothing, whitening [4] |
Grey | Rich in silica | Antiedematous, anti-aging, measure reduction [20] Antiedematous [18] Sunscreen and body beautification [16] |
Brown | Rich in silicon, aluminum, titanium; low iron content | Purifying, astringent, and moisturizing [18,20] Antiacne, antiaging, and anticellulite cosmetic products [18] Soothing and cleansing [15] Body beautification [16] |
Black | Rich in aluminum and silicon; low iron content [18,20] Also contains titanium, aluminum and magnesium silicate, calcium and magnesium carbonate, silicon oxide, zinc, and sulfur [18] | Skin rejuvenation, whitening, and oil absorption [18,20] Cellulite and stretch marks improvement [18] |
Pink | Rich in Fe2O3 and CuO [18,20] Hydrated aluminum silicate [18] Pink clay is a mixture of red and white clays in which composition can include quartz, smectite, illite, and kaolinite. Its color is normally related to the presence of iron as hematite—Fe2O3 [24] | Sensitive, delicate, dehydrated, tired skin, with soothing action [18,20] Rosacea, localized fat, cellulite, and tissue flaccidity [18] Skin nourishing, depurative, cleansing, decongestant, slightly tensor, revitalizing, exfoliating, toning effect, elasticity increase, skin shine, and smoothness improvement, relaxing, and antioxidant [4] Pink clay is normally softer and less adsorbent than green clay [24] Antioxidant and soothing effect on skin; commonly used on sensitive and dry face skin [24] |
Green | Fe2O3 associated with calcium, magnesium, potassium, manganese, phosphorus, zinc, copper, aluminum, silicon, selenium, cobalt, and molybdenum | Astringent, invigorating, stimulating, drying, and bactericidal actions [20] Skin oiliness reduction, cleansing, body beautification [16] Oily skin improvement [21] Oily, acneic skin, and oily hair improvement [18,23] Absorbent, adsorbent, purifying, pores tightening, calming, softening, repair skin cells [15] Blood circulation improvement, toxin removal, draining, used for massage, exfoliating, emollient, oiliness control, acneic skin [4] |
Red | Rich in Fe2O3 and CuO | Skin rejuvenation and measure reduction [18,20] Cleansing skin, sunscreen [23] Dry skin improvement [21] Blood circulation improvement, blood flow increase [4] |
Class | Family | Group | Subgroup |
---|---|---|---|
Silicates with lamellar structure (phyllosilicates) | 1:1-type layers | Kaolinite-serpentine | Kaolinite, halloysite, nacrite, dickite, chrysotile, antigorite, lizardite |
2:1-type layers | Smectites | Dioctahedral: beidellite, montmorillonite, nontronite | |
Vermiculites | ---- | ||
Talc | Illite, celadomite, fengita, fussite, muscovite | ||
Silicates with fibrous structure | 2:1-type layers | Palygorskite-sepiolite | Palygorskite (known as attapulgite), sepiolite |
Group | Mineral | Cosmetic Use | Other Relevant Characteristics |
---|---|---|---|
Oxides | Rutile (TiO2) | Physical UV filter, protection against visible light, dermatological protector | High refraction index |
Zincite (ZnO) | Physical solar filter, UV filter, protection against visible light, dermatological protector, antiseptic | High refraction index | |
Carbonates | Calcite (CaCO3) | Abrasive and polishing agent in toothpastes | Non-toxic, proper hardness to be used in toothpastes |
Hydrozincite (Zn5(CO3)2(OH)6) and smithsonite (ZnCO3) | Dermatological protector | High sorption capacity | |
Sulphates | Epsomite (MgSO4.7H2O) and mirabilite (Na2SO4.10H2O) | Bathroom salt | High water- solubility |
Chalcanthite (CuSO4.5H2O), zincosite (ZnSO4), and goslarite (ZnSO4.7H2O) | Antiseptic | High astringent capacity | |
Alum (KAl(SO4)2∙12H2O) | Antiseptic and deodorant | High astringent capacity | |
Chlorides | Halite (NaCl) and sylvite (KCl) | Bathroom salt | High water- solubility |
Phyllosilicates | Smectites (montmorillonite, saponite, hectorite), and talc | Dermatological protector, cosmetic creams, powders, and emulsions, makeup products | Opacity and high sorption capacity |
Kaolinite | Dermatological protector, cosmetic creams, powders, and emulsions, face masks, makeup products, anti-inflammatories | Opacity and high sorption capacity, heat retention capacity | |
Palygorskite, sepiolite, and mica (muscovite) | Cosmetic creams, powders, and emulsions | Opacity and high sorption capacity | |
Others | Sulphur (S) | Antiseptic, keratolytic reducer | High astringent capacity |
Greenockite (CdS) | Keratolytic reducer | Reacts with cysteine in keratinocytes | |
Borax (Na2B4O7.10H2O) | Antiseptic | High astringent capacity | |
Niter (KNO3) | Desensitizing agent in toothpastes | Non-toxic, high water-solubility |
Clay Type | Use |
---|---|
Kaolinite | Emulsifying agent (creams and pastes), suspending and anticaking agent (in liquid formulations), thickening agent |
Talc | Emulsifying agent (creams and pastes), suspending and anticaking agent (in liquid formulations) |
Secondary emulsifying agent in makeup products (as it remains in the interface between water and oil phases) | |
Diluent and lubricant in powder formulations; can ease cosmetic powder compaction (e.g., face powders); diluent for pigments in makeup formulations | |
Filler, absorbent, protection agent in formulations like creams and pastes | |
Bentonite * and purified bentonite | Emulsifying agent (creams, ointments, and gels), suspending and anticaking agent (in gels, emulsions, pastes, and suspensions), improve formula stabilization (due to surface electronic charges that promote repulsion between particles and avoid formation of aggregates) |
Rheological additive in toothpastes | |
Emulsion stability additive | |
Thickener in topical suspensions | |
Thickener, suspending and thixotropy agent in liquid makeup products | |
Magnesium aluminum silicate | Emulsifying agent (creams, ointments, and gels), suspending and anticaking agent (in gels, emulsions, pastes, and suspensions), improve formula stabilization (due to surface electronic charges that promote repulsion between particles and avoid formation of aggregates) |
Rheological additive, gelling agent. Can be applied to pigment suspensions | |
Magnesium trisilicate | Suspending and anticaking agent |
Gelling in non-polar organic solvents in antiperspirants, lotions, suntan products, nail lacquers, lip products | |
Smectites | Emulsifying agent, thickening agent, suspending, and anticaking agent |
Some smectites (e.g., mixture of montmorillonite and saponite) are used as thickening or gelling agents in cosmetic gels ** | |
Smectites can be mixed with pigments to dilute them—this mixture can be used in makeup products (10–25% pigments) or incorporated in emulsions (3–10% pigments) | |
Palygorskite | Emulsifying agent, thickening agent, suspending and anticaking agent in topical suspensions, pastes, creams, etc. |
Vermiculite | Diluent and binder, emulsifying agent, thickening agent, anticaking agent, flavor corrector, carrier of active compounds |
Hectorite | Thickener, suspending and thixotropy agent in lotions, shampoos, and liquid makeup products |
Synthetic hectorite | Viscosity agent in toothpastes and shampoos |
Thixotropy in toothpastes, emulsions, and shampoos | |
Suspending agent in liquid makeup products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarruf, F.D.; Contreras, V.J.P.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics 2024, 11, 7. https://doi.org/10.3390/cosmetics11010007
Sarruf FD, Contreras VJP, Martinez RM, Velasco MVR, Baby AR. The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics. 2024; 11(1):7. https://doi.org/10.3390/cosmetics11010007
Chicago/Turabian StyleSarruf, Fernanda Daud, Vecxi Judith Pereda Contreras, Renata Miliani Martinez, Maria Valéria Robles Velasco, and André Rolim Baby. 2024. "The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics" Cosmetics 11, no. 1: 7. https://doi.org/10.3390/cosmetics11010007
APA StyleSarruf, F. D., Contreras, V. J. P., Martinez, R. M., Velasco, M. V. R., & Baby, A. R. (2024). The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics, 11(1), 7. https://doi.org/10.3390/cosmetics11010007