Fenugreek as a Potential Active Ingredient for the Development of Innovative Cosmetic Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ultrasound-Assisted Recovery of Bioactive Antioxidants
2.3. Design of Experiments and Statistical Analysis
- Yi denotes the observed response variables;
- β0 is a constant;
- β1, β2, and β3 are linear coefficients for X1, X2, and X3, respectively;
- β1,1, β2,2, and β3,3 are coefficients for the quadratic terms , and respectively;
- β1,2, β1,3, and β2,3 are coefficients for the interaction terms , and respectively.
2.4. Total Phenolic and Flavonoid Contents
2.5. Chromatographic Phenolic Composition Assessment
2.6. Biological Activities
2.6.1. Antioxidant Activities
2.6.2. Antibacterial Activity
Assessment of Eco-Extract via Disc Diffusion Technique
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.6.3. Anti-Inflammatory Activity
2.7. Cosmetic Cream Formulation
2.8. Stability Testing Evaluation
2.9. Sensory Analysis
3. Results and Discussion
3.1. Design of Experiment
3.2. Interpretation of Coefficients
3.3. Model Validation via ANOVA Analysis
3.4. Analysis of Response Surface Curves
3.5. Optimization of Antioxidant Extraction Conditions from Fenugreek
3.6. Phenolic Content and Antioxidant Activities in Fenugreek Extract
3.7. Phytochemicals Identification by RP-HPLC
3.8. Antibacterial Activity
3.9. Evaluation of Anti-Inflammatory Activity
3.9.1. Evaluation of Cytotoxicity of Fenugreek Eco-Extract
3.9.2. Measurement of Nitrite Production (NO)
3.10. Incorporation of Fenugreek Eco-Extract into Cosmetic Cream Formulation
3.11. Analysis and Stability of the Cosmetic Cream
3.12. Evaluation of Sensory Characteristics of the Cosmetic Cream
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Gallo, R.L. The Role of the Skin Microbiome in Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2019, 122, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Mc Loughlin, I.J.; Wright, E.M.; Tagg, J.R.; Jain, R.; Hale, J.D.F. Skin Microbiome—The Next Frontier for Probiotic Intervention. Probiotics Antimicrob. Proteins 2022, 14, 630–647. [Google Scholar] [CrossRef]
- Cavinato, M.; Jansen-Dürr, P. Molecular Mechanisms of UVB-Induced Senescence of Dermal Fibroblasts and Its Relevance for Photoaging of the Human Skin. Exp. Gerontol. 2017, 94, 78–82. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Tobin, D.J. Introduction to Skin Aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef]
- Panyachariwat, N.; Jimtaisong, A.; Saewan, N. Antioxidative Potentials of Eleutherine bulbosa Bulb and Its Utilization in Topical Cosmetic Emulsion. Cosmetics 2024, 11, 111. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Oliveira, A.L.; Pedrosa, S.S.; Pintado, M.; Madureira, A.R. Potential of Sugarcane Extracts as Cosmetic and Skincare Ingredients. Ind. Crops Prod. 2021, 169, 113625. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Khemakhem, B.; Fendri, I.; Dahech, I.; Belghuith, K.; Kammoun, R.; Mejdoub, H. Purification and Characterization of a Maltogenic Amylase from Fenugreek (Trigonella foenum-graecum) Seeds Using the Box-Behnken Design (BBD). Ind. Crops Prod. 2013, 43, 334–339. [Google Scholar] [CrossRef]
- Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of Fenugreek (Trigonella foenum-graecum L.) Intake on Glycemia: A Meta-Analysis of Clinical Trials. Nutr. J. 2014, 13, 7. [Google Scholar]
- Wani, S.A.; Kumar, P. Fenugreek: A Review on Its Nutraceutical Properties and Utilization in Various Food Products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106. [Google Scholar] [CrossRef]
- Yusharyahya, S.N.; Bramono, K.; Indriatmi, W.; Prasetyo, M.; Ascobat, P.; Hestiantoro, A.; Wiraguna, A.A.G.P. Anti-Aging Effects of Fenugreek Cream on Postmenopausal Skin: A Randomized Controlled Trial. J. Appl. Pharm. Sci. 2021, 11, 095–103. [Google Scholar] [CrossRef]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N.E. Identification and Quantification of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Germinated Seeds by LC–DAD–ESI/MS Analysis. J. Food Compos. Anal. 2014, 35, 21–29. [Google Scholar] [CrossRef]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Chaabani, E.; Mgaidi, S.; Ben Abdennebi, A.; Dakhlaoui, S.; Hammami, M.; Selmi, S.; Zariat, M.; Shili, A.; Merah, O.; Bettaieb Rebey, I. Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology. Cosmetics 2024, 11, 186. [Google Scholar] [CrossRef]
- Rguez, S.; Papetti, A.; Bourguou, S.; Msaada, K.; Hammami, M.; Mkadmini Hammi, K.; Hamrouni Sellami, I. Antifungal and Antioxidant Effects of Phenolic Acids and Flavonol Glycosides from Tetraclinis articulata. Arch. Phytopathol. Plant Prot. 2022, 55, 284–302. [Google Scholar] [CrossRef]
- Yeddes, W.; Chalghoum, A.; Aidi-Wannes, W.; Ksouri, R.; Saidani Tounsi, M. Effect of Bioclimatic Area and Season on Phenolics and Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Leaves. J. Essent. Oil Res. 2019, 31, 432–443. [Google Scholar]
- Alwhibi, M.S.; Soliman, D.A. Evaluating the Antibacterial Activity of Fenugreek (Trigonella foenum-graecum) Seed Extract Against a Selection of Different Pathogenic Bacteria. J. Pure Appl. Microbiol. 2014, 8, 817–821. [Google Scholar]
- Alshareef, F. Protocol to Evaluate Antibacterial Activity MIC, FIC, and Time Kill Method. Acta Sci. Microbiol. 2021, 4, 5. [Google Scholar] [CrossRef]
- Habachi, E.; Rebey, I.B.; Dakhlaoui, S.; Hammami, M.; Sawsen, S.; Msaada, K.; Merah, O.; Bourgou, S. Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory, and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics 2022, 9, 143. [Google Scholar] [CrossRef]
- Gonçalves, G.M.S.; Srebernich, S.M.; Vercelino, B.G.; Zampieri, B.M. Influence of the Presence and Type of Fragrance on the Sensory Perception of Cosmetic Formulations. Braz. Arch. Biol. Technol. 2013, 56, 203–212. [Google Scholar] [CrossRef]
- Dastan, S.; Turker, I.; Isleroglu, H. Enhanced Recovery of Bioactive Compounds from Trigonella foenum-graecum Seeds by Ultrasonic-Assisted Extraction. J. Food Meas. Charact. 2022, 16, 1073–1086. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wu, Q.; Ding, X.; Yin, C.; Yang, E.; Guo, F. Multiple Responses Optimization of Antioxidative Components Extracted from Fenugreek Seeds Using Response Surface Methodology to Identify Their Chemical Compositions. Food Sci. Nutr. 2022, 10, 3475–3484. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic-Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Varzaru, I.; Oancea, A.G.; Vlaicu, P.A.; Saracila, M.; Untea, A.E. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants 2023, 12, 2125. [Google Scholar] [CrossRef]
- Asif, M. Chemistry and Antioxidant Activity of Plants Containing Some Phenolic Compounds. Chem. Int. 2015, 1, 35–52. [Google Scholar]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sousa, I.M.d.O.; Gonçalves, F.C.d.S.; Eberlin, S.; Dávila, J.L.; Jozala, A.F.; Chaud, M.V.; Sanchez-Lopez, E.; et al. Flavonoid-Enriched Plant-Extract-Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties. Antioxidants 2019, 8, 443. [Google Scholar] [CrossRef]
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in Skin Senescence Prevention and Treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans, and Flavonoids in Human Health—A Review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. Metal Ions, Metal Chelators, and Metal Chelating Assay as Antioxidant Method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Eaknai, W.; Bunwatcharaphansakun, P.; Phungbun, C.; Jantimaporn, A.; Chaisri, S.; Boonrungsiman, S.; Nimmannit, U.; Khongkow, M. Ethanolic Fenugreek Extract: Its Molecular Mechanisms against Skin Aging and the Enhanced Functions by Nanoencapsulation. Pharmaceuticals 2022, 15, 254. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, Y.; Fu, J.; He, L.; Guo, X.; Ye, H.; Yin, C.; Li, H.; Jiang, H. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules 2024, 29, 5226. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Lin, C.-H.; Yang, S.-C.; Alalaiwe, A.; Fang, J.-Y. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Ma, R.; Sun, W.; Ji, Z. Antibacterial Activity of Epigallocatechin Gallate (EGCG) Against Shigella flexneri. Int. J. Environ. Res. Public Health 2023, 20, 4676. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, E.; Pournamdari, M.; Mehrabani, M.; Esmaeili Tarzic, M.; Mohamadi, N.; Asadi, A.; Illaghi, S.; Sharififar, F. Investigation of Bioactive Fractions from Fenugreek Seeds (Trigonella foenum-graecum L.): Chemical Profiling, In Vitro Anti-Inflammatory Activity, and Their Potential Against LPS-Stimulated J774A.1 Cells. Adv. Tradit. Med. 2024, 24, 1045–1052. [Google Scholar]
- Yang, Y.; Li, S.; Qu, Y.; Wang, X.; An, W.; Li, Z.; Han, Z.; Qin, L. Nitrate Partially Inhibits Lipopolysaccharide-Induced Inflammation by Maintaining Mitochondrial Function. J. Int. Med. Res. 2020, 48, 2. [Google Scholar] [CrossRef]
- Yoon, J.B.; Kim, S.J.; Hwang, S.G.; Chang, S.; Kang, S.S.; Chun, J.S. Non-steroidal anti-inflammatory drugs inhibit nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes independent of cyclooxygenase activity. J. Biol. Chem. 2003, 278, 15319–15325. [Google Scholar] [CrossRef] [PubMed]
- Mandegary, A.; Pournamdari, M.; Sharififar, F.; Pournourmohammadi, S.; Fardiar, R.; Shooli, S. Alkaloid and Flavonoid Rich Fractions of Fenugreek Seeds (Trigonella foenum-graecum L.) with Antinociceptive and Anti-Inflammatory Effects. Food Chem. Toxicol. 2012, 50, 2503–2507. [Google Scholar]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Batista, C.M.; De Queiroz, L.A.; Alves, Â.V.F.; Reis, E.C.A.; Santos, F.A.; Castro, T.N.; Lima, B.S.; Araújo, A.N.S.; Godoy, C.A.P.; Severino, P.; et al. Photoprotection and Skin Irritation Effect of Hydrogels Containing Hydroalcoholic Extract of Red Propolis: A Natural Pathway Against Skin Cancer. Heliyon 2022, 8, e08893. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.L.; Rajagopal, M.; Chinnappan, S.; Selvaraja, M.; Leong, M.Y.; Tan, L.F.; Yap, V.L. Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. Cosmetics 2022, 9, 186. [Google Scholar] [CrossRef]
- Okafo, S.E.; Enwa, F.O.; Amusile, O. Formulation and Evaluation of Antimicrobial Properties of Psidium guajava Ethanol Leaf Extract Creams. Trop. J. Nat. Prod. Res. 2021, 5, 2144–2148. [Google Scholar]
Exp | Independent Variables | Responses | |||
---|---|---|---|---|---|
Time | Ultrasonic Power | EtOH/H2O Ratio | YTPC | YPI | |
(min) | (%) | (% v/v) | (mg GAE/g DM) | (%) | |
1 | 5 | 50 | 25 | 18.53 | 63.70 |
2 | 5 | 70 | 25 | 13.85 | 51.63 |
3 | 5 | 50 | 75 | 5.00 | 35.05 |
4 | 5 | 70 | 75 | 6.85 | 52.61 |
5 | 15 | 50 | 25 | 15.07 | 63.05 |
6 | 15 | 70 | 25 | 11.77 | 51.38 |
7 | 15 | 50 | 75 | 9.33 | 39.34 |
8 | 15 | 70 | 75 | 18.68 | 63.85 |
9 | 10 | 50 | 50 | 19.20 | 62.12 |
10 | 10 | 70 | 50 | 19.20 | 66.21 |
11 | 10 | 60 | 25 | 14.57 | 56.57 |
12 | 10 | 60 | 75 | 9.12 | 50.82 |
13 | 5 | 60 | 50 | 15.62 | 55.84 |
14 | 15 | 60 | 50 | 19.75 | 54.58 |
15 | 10 | 60 | 50 | 18.28 | 58.84 |
16 | 10 | 60 | 50 | 19.62 | 60.42 |
17 | 10 | 60 | 50 | 19.40 | 61.70 |
18 | 10 | 60 | 50 | 19.02 | 60.71 |
19 | 10 | 60 | 50 | 19.05 | 59.17 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | Fisher’s F-Test | Significance |
---|---|---|---|---|---|
YPI | |||||
Regression | 1.17486 | 9 | 1.30540 | 43.5432 | *** |
Validity | 2.15036 | 5 | 4.30071 | 3.1404 | 14.5% |
R2 = 0.978 | FObs (43.54) > Ftab (3.18) | ||||
YTPC | |||||
Regression | 402.59 | 9 | 44.7329 | 48.2308 | *** |
Validity | 7.3166 | 5 | 1.4633 | 5.6794 | 6.0% |
R2 = 0.980 | FObs (48.23) > Ftab (3.18) |
Factor | Experimental Value | Predicted Value | ||||
---|---|---|---|---|---|---|
Ultrasound Power (%) | EtOH/H2O Percentage (%v/v) | Time (min) | PI (%) | TPC (mgGAE/gDM) | PI (%) | TPC (mgGAE/gDM) |
60 | 50 | 10 | 63.24 ± 0.83 | 18.56 ± 0.03 | 60.20 | 18.78 |
Assay | Values |
---|---|
TPC (mg EAG/g DM) | 18.56 ± 0.54 |
TFC (mg EC/g DM) | 19.26 ± 1.63 |
TCT (mg EC/g DM) | 10.35 ± 0.72 |
TAC (mg/mL) | 218.75 ± 1.87 |
DPPH (µg/mL) | CI50 = 77.17 ± 0.75 |
ABTS (µg/mL) | CI50 = 93.69 ± 0.86 |
RP (µg/mL) | CE50 = 131.77 ± 5.88 |
Compounds | mg/g DW | Calibration Curve | R2 |
---|---|---|---|
Ferulic acid | 0.81 ± 0.05 | Y = 20.505x − 8.728 | 1 |
Vanillic acid | 9.85 ± 0.08 | Y = 9.02x − 1.55 | 0.995 |
Catechol | 5.74 ± 0.01 | Y = 3.632x + 1.8 | 0.998 |
Caffeic acid | 1.74 ± 0.02 | Y = 23.496x + 5.57 | 0.999 |
Myricetin | 6.73 ± 0.05 | Y = 6.7915x − 35.35 | 0.994 |
Epicatechin | 22.58 ± 0.01 | Y = 3.632x + 1.8 | 0.998 |
Catechin | 8.21 ± 0.04 | Y = 3.632x + 1.8 | 0.998 |
Luteolin | 5.6 ± 0.02 | Y = 7.4296x + 13.16 | 0.996 |
Apigenin | 1.35 ± 0.05 | Y = 12.418x + 59.908 | 0.997 |
Gram | ATCC | Strains | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|---|---|
Gram + | 29212 | Entrococcus feacalis | 50 | 50 |
Gram + | 25923 | Staphylococcus aureus | 50 | 50 |
Gram − | 3739 | Escherichia coli | 50 | 70 |
Gram − | 14028 | Salmonella thyphimirium | 50 | 50 |
Day 0 | Day 30 | Day 60 | Day 90 | |
---|---|---|---|---|
pH | 6.34 | 6.25 | 6.32 | 6.35 |
Viscosity (cp) | 7941.69 | 7956.70 | 7967.68 | 7973.62 |
Z-average (d.nm) | 321.20 a ± 5.32 | 332.79 a ± 9.05 | 339.11 a ± 18.07 | 320.60 a ± 2.18 |
Zeta potential (mV) | −37.25 a ± 1.45 | −36.49 a ± 2.16 | −36.18 a ± 2.67 | −36.70 a ± 3.86 |
L* | 82.5 | 82.5 | 82.5 | 82.5 |
a* | −2.4 | −2.4 | −2.5 | −2.6 |
b* | 4.3 | 4.7 | 4.4 | 4.8 |
Color difference ΔE | - | 0.14 | 0.14 | 0.28 |
Centrifuge stability 4 °C | Stable | Stable | Stable | Stable |
Centrifuge stability 25 °C | Stable | Stable | Stable | Stable |
Centrifuge stability 40 °C | Stable | Stable | Stable | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdennebi, A.B.; Chaabani, E.; Bourgou, S.; Hammami, M.; Tounsi, M.S.; Merah, O.; Bettaieb Rebey, I. Fenugreek as a Potential Active Ingredient for the Development of Innovative Cosmetic Formulation. Cosmetics 2025, 12, 21. https://doi.org/10.3390/cosmetics12010021
Abdennebi AB, Chaabani E, Bourgou S, Hammami M, Tounsi MS, Merah O, Bettaieb Rebey I. Fenugreek as a Potential Active Ingredient for the Development of Innovative Cosmetic Formulation. Cosmetics. 2025; 12(1):21. https://doi.org/10.3390/cosmetics12010021
Chicago/Turabian StyleAbdennebi, Ameni Ben, Emna Chaabani, Soumaya Bourgou, Majdi Hammami, Moufida Saidani Tounsi, Othmane Merah, and Iness Bettaieb Rebey. 2025. "Fenugreek as a Potential Active Ingredient for the Development of Innovative Cosmetic Formulation" Cosmetics 12, no. 1: 21. https://doi.org/10.3390/cosmetics12010021
APA StyleAbdennebi, A. B., Chaabani, E., Bourgou, S., Hammami, M., Tounsi, M. S., Merah, O., & Bettaieb Rebey, I. (2025). Fenugreek as a Potential Active Ingredient for the Development of Innovative Cosmetic Formulation. Cosmetics, 12(1), 21. https://doi.org/10.3390/cosmetics12010021