Biologically Active Components and Skincare Benefits of Rice Fermentation Products: A Review
Abstract
:1. Introduction
2. Rice Fermentation and Its Advantages
2.1. Rice Fermentation Process
2.2. Advantages of RFPs
2.2.1. Increased Production of Bioactive Compounds
2.2.2. Enhanced Biocompatibility and Bioavailability
2.2.3. Improved Skin Tolerance and Reduced Irritation
2.2.4. Sustainability and Environmental Benefits
3. Bioactive Components in RFPs
3.1. Amino Acids
3.2. Peptides
3.3. Organic Acids
3.4. Polyphenols
3.5. Polysaccharides
3.6. Vitamins and Minerals
4. Skincare Benefits of RFPs
4.1. Moisturizing
4.2. Skin Barrier Repair
4.3. Antioxidation
4.4. Whitening
4.5. Anti-Inflammation
4.6. Ultraviolet Protection
4.7. Anti-Aging Effects
4.8. Balance the Skin’s Microecology
5. Challenges and Limitations of RFPs
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nhani, G.B.B.; Di Filippo, L.D.; de Paula, G.A.; Mantovanelli, V.R.; da Fonseca, P.P.; Tashiro, F.M.; Monteiro, D.C.; Fonseca-Santos, B.; Duarte, J.L.; Chorilli, M. High-tech sustainable beauty: Exploring nanotechnology for the development of cosmetics using plant and animal by-products. Cosmetics 2024, 11, 112. [Google Scholar] [CrossRef]
- Zamil, D.H.; Khan, R.M.; Braun, T.L.; Nawas, Z.Y. Dermatological uses of rice products: Trend or true? J. Cosmet. Dermatol. 2022, 21, 6056–6060. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rivero, C.; López-Gómez, J.P. Unlocking the potential of fermentation in cosmetics: A review. Fermentation 2023, 9, 463. [Google Scholar] [CrossRef]
- Marto, J.; Neves, Â.; Gonçalves, L.; Pinto, P.; Almeida, C.; Simões, S. Rice Water: A Traditional Ingredient with Anti-Aging Efficacy. Cosmetics 2018, 5, 26. [Google Scholar] [CrossRef]
- Sivamaruthi, B.; Kesika, P.; Chaiyasut, C. A comprehensive review on functional properties of fermented rice bran. Phytother. Res. 2018, 12, 218–224. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Punia, S.; Kaur, M. Fermentation of cereals: A tool to enhance bioactive compounds. Plant Biotechnol. Recent Adv. Dev. 2017, 157, 157–170. [Google Scholar]
- Verni, M.; Rizzello, C.G.; Coda, R. Fermentation biotechnology applied to cereal industry by-products: Nutritional and functional insights. Front. Nutr. 2019, 6, 42. [Google Scholar] [CrossRef]
- Sadh, P.K.; Kumar, S.; Chawla, P.; Duhan, J. Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules 2018, 23, 2560. [Google Scholar] [CrossRef]
- Gao, L.; Yang, H.; Wang, X.; Huang, Z.; Ishii, M.; Igarashi, Y.; Cui, Z. Rice straw fermentation using lactic acid bacteria. Bioresour. Technol. 2008, 99, 2742–2748. [Google Scholar] [CrossRef]
- Ayyadurai, G.; Nandhakumar, R.; Ramesh, R.D.; Marimuthu, K.; Tharumasivam, S.V. Beneficial role of fermented rice in healthy lifestyle. Int. J. Multidiscip. Res. Growth Eval. 2022, 3, 314–316. [Google Scholar]
- Ryu, J.S.; Lee, H.J.; Bae, S.H.; Kim, S.Y.; Park, Y.; Suh, H.J.; Jeong, Y.H. The bioavailability of red ginseng extract fermented by Phellinus linteus. J. Ginseng Res. 2013, 37, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Abd Razak, D.L.; Abd Rashid, N.Y.; Jamaluddin, A.; Sharifudin, S.A.; Abd Kahar, A.; Long, K. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci. 2017, 16, 127–134. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Jamaluddin, A.; Abd Rashid, N.Y.; Abd Ghani, A.; Manan, M.A. Assessment of fermented broken rice extracts for their potential as functional ingredients in cosmeceutical products. Ann. Agric. Sci. 2019, 64, 176–182. [Google Scholar] [CrossRef]
- Burlando, B.; Cornara, L. Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update. Trends Food Sci. Technol. 2014, 40, 82–98. [Google Scholar] [CrossRef]
- Chanthathamrongsiri, N.; Prompanya, C.; Leelakanok, N.; Jiangseubchatveera, N.; Semangoen, T.; Nuurai, P.; Khawsuk, W.; Petchsomrit, A. Rice extract: Antioxidant activities and formulations. J. Appl. Pharm. Sci. 2022, 12, 126–133. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Wang, J.; Sun, B. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv. 2019, 9, 18060–18069. [Google Scholar] [CrossRef]
- Gupta, K.; Bardhan, P.; Saikia, D.; Rather, M.A.; Loying, S.; Mandal, M.; Kataki, R. Microbial fermentation: Basic fundamentals and its dynamic prospect in various industrial applications. In Industrial Microbiology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 107–128. [Google Scholar]
- Lin, Y.L.; Wang, T.H.; Lee, M.H.; Su, N.W. Biologically active components and nutraceuticals in the Monascus-fermented rice: A review. Appl. Microbiol. Biotechnol. 2008, 77, 965–973. [Google Scholar] [CrossRef]
- Saleh, A.S.M.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1070–1096. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Bosco, S.J.D.; Sunooj, K.V.; Farooq, S. A review on nutritional properties, shelf life, health aspects, and consumption of brown rice in comparison with white rice. Cereal Chem. 2020, 97, 895–903. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chem. 2018, 239, 733–741. [Google Scholar] [CrossRef]
- Bangar, S.P.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, G.; Qin, J.; Petranovic, D.; Nielsen, J. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc. Natl. Acad. Sci. USA 2018, 115, e11025–e11032. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Miao, S.; Qin, L. Screening and application of lactic acid bacteria and yeasts with l-lactic acid-producing and antioxidant capacity in traditional fermented rice acid. Food Sci. Nutr. 2020, 8, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, L.Á.; Abhilasha, A.; Singh, J.; Elias, M.C.; Colussi, R. Rice germination and its impact on technological and nutritional properties: A review. Rice Sci. 2022, 29, 201–215. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- De Carvalho, J.C.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Magalhães, A.I., Jr.; Soccol, C.R. Approaches for the isolation and purification of fermentation products. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 783–805. [Google Scholar]
- Adebo, O.A.; Medina-Meza, I.G. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef]
- De Villa, R.; Roasa, J.; Mine, Y.; Tsao, R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit. Rev. Food Sci. Nutr. 2023, 63, 5388–5413. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Gonçalves, L.M.; Prietto, L.; Hackbart, H.S.; Furlong, E.B. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem. 2014, 146, 371–377. [Google Scholar] [CrossRef]
- Lim, M.J.; Barathikannan, K.; Jeong, Y.J.; Chelliah, R.; Vijayalakshmi, S.; Park, S.J.; Oh, D.H. Exploring the impact of fermentation on brown rice: Health benefits and value-added foods—A comprehensive meta-analysis. Fermentation 2023, 10, 3. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Qu, C.; Bai, J.; Zhao, Y.; Xiao, X. Fermented red rice improved the antioxidant activity, bioaccessibility of polyphenols, and lipid-lowering activity in C. elegans. Food Bioeng. 2024, 3, 160–171. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Wang, X.; Selvaraj, J.N.; Zhang, G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 1545–1556. [Google Scholar] [CrossRef]
- Hussain, A.; Bose, S.; Wang, J.H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Majchrzak, W.; Motyl, I.; Śmigielski, K. Biological and cosmetical importance of fermented raw materials: An overview. Molecules 2022, 27, 4845. [Google Scholar] [CrossRef]
- Shrivastava, K.; Bajpai, N.; Wasule, D. Fermented beauty-barrier boosting formula for healthy skin. Nat. Prod. Res. 2023, 1, 95. [Google Scholar]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Sehgal, A.; Singh, A. The influence of pH on skin’s surface. J. Pharm. Negat. Results 2022, 13, 2012–2023. [Google Scholar]
- Schmid-Wendtner, M.H.; Korting, H.C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef]
- Muniasamy, R.; Venkatachalam, P.; Rangarajan, V.; Samal, S.; Rathnasamy, S. A comprehensive perspective on sustainable bioprocessing through extractive fermentation: Challenges and prospects. Rev. Environ. Sci. Bio/Technol. 2023, 22, 715–737. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Taher, H. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ. Technol. Innov. 2020, 20, 101138. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Panuszko, A.; Adamczak, B.; Czub, J.; Gojło, E.; Stangret, J. Hydration of amino acids: FTIR spectra and molecular dynamics studies. Amino Acids 2015, 47, 2265–2278. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, Y.; Su, J.; Yang, N.; Xu, X.; Jin, Z.; Cui, B.; Wu, F. Changes in the nutritional value, flavor, and antioxidant activity of brown glutinous rice during fermentation. Food Biosci. 2021, 43, 101273. [Google Scholar] [CrossRef]
- Bao, L.; Li, Y.; Wang, Q.; Han, J.; Yang, X.; Li, H.; Wang, S.; Wen, H.; Li, S.; Liu, H. Nutritive and bioactive components in rice fermented with the edible mushroom Pleurotus eryngii. Mycology 2013, 4, 96–102. [Google Scholar] [CrossRef]
- Somdee, T.; Thitusutthi, S.; Somdee, T.; Chumroenpahtc, T.; Mungvongsad, A. Effect of solid-state fermentation on amino acid profile and phytochemicals of red rice bran. ScienceAsia 2023, 49, 63–69. [Google Scholar] [CrossRef]
- Avila Rodriguez, M.I.; Rodriguez Barroso, L.G.; Sanchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3885. [Google Scholar] [CrossRef]
- Jia, L.; Wang, L.; Liu, C.; Liang, Y.; Lin, Q. Bioactive peptides from foods: Production, function, and application. Food Funct. 2021, 12, 7108–7125. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, L.; O’Regan, J.; Kelly, L.A.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Janarny, G.; Gunathilake, K. Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101510. [Google Scholar] [CrossRef]
- Babini, E.; Taneyo-Saa, D.L.; Tassoni, A.; Ferri, M.; Kraft, A.; Grän-Heedfeld, J.; Bretz, K.; Roda, A.; Michelini, E.; Calabretta, M.M.; et al. Microbial fermentation of industrial rice-starch byproduct as valuable source of peptide fractions with health-related activity. Microorganisms 2020, 8, 986. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; You, S.; Fu, H.; Wang, D.; Zhang, J.; Wang, C.; Li, M. Purification and identification of antioxidant peptides from rice fermentation of Lactobacillus plantarum and their protective effects on UVA–induced oxidative stress in skin. Antioxidants 2022, 11, 2333. [Google Scholar] [CrossRef]
- Liu, N.; Pan, J.; Miao, S.; Qin, L. Microbial community in Chinese traditional fermented acid rice soup (rice-acid) and its correlations with key organic acids and volatile compounds. Food Res. Int. 2020, 137, 109672. [Google Scholar] [CrossRef]
- Măgerușan, Ș.E.; Hancu, G.; Rusu, A. A comprehensive bibliographic review concerning the efficacy of organic acids for chemical peels treating acne vulgaris. Molecules 2023, 28, 7219. [Google Scholar] [CrossRef]
- Karwal, K.; Mukovozov, I. Topical AHA in dermatology: Formulations, mechanisms of action, efficacy, and future perspectives. Cosmetics 2023, 10, 131. [Google Scholar] [CrossRef]
- Feng, X.; Shang, J.; Gu, Z.; Luo, X.; Chen, Y.; Liu, Y. Lactic acid chemical peeling in skin disorders. Clin. Cosmet. Investig. Dermatol. 2024, 17, 901–909. [Google Scholar] [CrossRef]
- Almeman, A.A. Evaluating the efficacy and safety of alpha-hydroxy acids in dermatological practice: A comprehensive clinical and legal review. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1661–1685. [Google Scholar] [CrossRef]
- Shivhare, S.C.; Malviya, K.G.; Shivhare, M.K.K.; Vijay, J. A review: Natural skin lightening and nourishing agents. Res. J. Top. Cosmet. Sci. 2013, 4, 21–25. [Google Scholar]
- Kim, H.; Kim, J.T.; Barua, S.; Yoo, S.Y.; Hong, S.C.; Lee, K.B.; Lee, J. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization. Expert Opin. Drug Deliv. 2018, 15, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Naeini, S.H.; Mavaddatiyan, L.; Kalkhoran, Z.R.; Taherkhani, S.; Talkhabi, M. Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: Evidences and perspectives. Exp. Gerontol. 2023, 175, 112154. [Google Scholar] [CrossRef] [PubMed]
- Bayliak, M.M.; Lushchak, V.I. Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res. Rev. 2021, 66, 101237. [Google Scholar] [CrossRef]
- Tyagi, A.; Yeon, S.J.; Daliri, E.B.M.; Chen, X.; Chelliah, R.; Oh, D.H. Untargeted metabolomics of Korean fermented brown rice using UHPLC Q-TOF MS/MS reveal an abundance of potential dietary antioxidative and stress-reducing compounds. Antioxidants 2021, 10, 626. [Google Scholar] [CrossRef]
- Liu, H.M.; Cheng, M.Y.; Xun, M.H.; Zhao, Z.W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef]
- Csekes, E.; Račková, L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from plants protect against skin photoaging. Oxidative Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef]
- Le, B.; Anh, P.T.N.; Kim, J.E.; Cheng, J.; Yang, S.H. Rice bran fermentation by lactic acid bacteria to enhance antioxidant activities and increase the ferulic acid, ρ-coumaric acid, and γ-oryzanol content. J. Appl. Biol. Chem. 2019, 62, 257–264. [Google Scholar] [CrossRef]
- Li, H.; Seewaeng, P.; Inchuen, S.; Siriamornpun, S. Comparative study on bioactive compounds, glucose, alcohol, and antioxidant activities of fermented rice with Thai and Chinese starter cultures and rice varieties. Int. Food Res. J. 2020, 27, 385–396. [Google Scholar]
- Zhang, T.; Guo, Q.; Xin, Y.; Liu, Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arab. J. Chem. 2022, 15, 104163. [Google Scholar] [CrossRef]
- Chen, B.; Qiao, Y.; Wang, X.; Zhang, Y.; Fu, L. Extraction, structural characterization, biological functions, and application of rice bran polysaccharides: A review. Foods 2023, 12, 639. [Google Scholar] [CrossRef]
- Sindhu, R.K.; Goyal, A.; Das, J.; Neha, S.; Choden, S.; Kumar, P. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100044. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Wang, Y.; An, X.; Liu, N.; Song, M.; Yang, Y.; Yin, N.; Qi, J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J. Cereal Sci. 2021, 97, 103157. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Wu, X.; Algharib, S.A.; Gong, F.; Hu, J.; Luo, W.; Zhou, M.; Pan, Y.; Yan, Y.; et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. Int. J. Biol. Macromol. 2021, 173, 445–456. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, B.; Tang, X.; Mao, B.; Zhang, Q.; Zhang, T.; Zhao, J.; Cui, S.; Chen, W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr. Polym. 2023, 299, 120153. [Google Scholar] [CrossRef]
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Reddy, M.B.; Love, M. The impact of food processing on the nutritional quality of vitamins and minerals. Impact Process. Food Saf. 1999, 459, 99–106. [Google Scholar]
- Mishra, S.; Aravind, S.M.; Charpe, P.; Ajlouni, S.; Ranadheera, C.S.; Chakkaravarthi, S. Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. Food Biosci. 2022, 50, 102082. [Google Scholar] [CrossRef]
- Marques, C.; Hadjab, F.; Porcello, A.; Lourenço, K.; Scaletta, C.; Abdel-Sayed, P.; Hirt-Burri, N.; Applegate, L.A.; Laurent, A. Mechanistic insights into the multiple functions of niacinamide: Therapeutic implications and cosmeceutical applications in functional skincare products. Antioxidants 2024, 13, 425. [Google Scholar] [CrossRef]
- Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G.G.; Bissett, D.L.; Boissy, R.E. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 2002, 147, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of vitamins in skin health: A systematic review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Haftek, M.; Abdayem, R.; Guyonnet-Debersac, P. Skin minerals: Key roles of inorganic elements in skin physiological functions. Int. J. Mol. Sci. 2022, 23, 6267. [Google Scholar] [CrossRef]
- Dai, L.; Huang, C.; Yan, H.; Wang, Y.; Lu, Z.; Wu, Y. Study on the Anti-Lipogenesis Effect of Brown Rice Fermented by Saccharomyces Cerevisiae. J. Cosmet. Sci. 2024, 75, 192. [Google Scholar]
- Chen, M.; Sun, Y.; Zhu, L.; Li, L.; Zhao, Y. Study on the Skincare Effects of Red Rice Fermented by Aspergillus oryzae In Vitro. Molecules 2024, 29, 2066. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Z.; Guo, M.; Zhou, Z. Validation of the Tight Junction Promotion and Skin Barrier Enhancement by Saccharomyces Rice Ferment Filtrate. J. Cosmet. Sci. 2022, 73, 201. [Google Scholar]
- Chi, Y.; Kang, L.; Liu, X.; Sun, H.; Meng, Y.; Zhang, J.; Kang, Y.; Dai, Y. Preparation, purification, characterization and antioxidant activity of rice bran fermentation broth with Hypsizigus marmoreus. Fermentation 2024, 10, 188. [Google Scholar] [CrossRef]
- Sangkaew, O.; Yompakdee, C. Fermented unpolished black rice (Oryza sativa L.) inhibits melanogenesis via ERK, p38, and AKT phosphorylation in B16F10 melanoma cells. J. Microbiol. Biotechnol. 2020, 30, 1184–1194. [Google Scholar] [CrossRef]
- Chung, S.Y.; Seo, Y.K.; Park, J.M.; Seo, M.J.; Park, J.K.; Kim, J.W.; Park, C.S. Fermented rice bran downregulates MITF expression and leads to inhibition of α-MSH-induced melanogenesis in B16F1 melanoma. Biosci. Biotechnol. Biochem. 2009, 73, 1704–1710. [Google Scholar] [CrossRef]
- Ngo, D.H.; Tran, Q.T.; Kim, Y.S.; Hang, N.T.N.; Ngo, D.N.; Vo, T.S. GABA-enriched rice bran inhibits inflammation in LPS-stimulated macrophages via suppression of TLR4-MAPK/NF-κB signaling cascades. J. Food Biochem. 2022, 46, e14421. [Google Scholar] [CrossRef]
- Fan, J.P.; Choi, K.M.; Han, G.D. Inhibitory effects of water extracts of fermented rice bran on allergic response. Food Sci. Biotechnol. 2010, 19, 1573–1578. [Google Scholar] [CrossRef]
- Umeyama, L.; Kasahara, S.; Sugawara, M.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Anti-inflammatory effect of fermented brown rice and rice bran with Aspergillus oryzae on mice. Tradit. Kampo Med. 2021, 8, 60–65. [Google Scholar] [CrossRef]
- Jamaluddin, A.; Rahman, S.M.M.A.; Manan, M.A.; Razak, D.L.A.; Rashid, N.Y.A.; Ghani, A.A.; Yusof, N.Y.M. Biochemical and gene expression studies reveal the potential of Aspergillus oryzae-fermented broken rice and brewers’ rice water extracts as anti-photoaging agents. Cell. Mol. Biol. 2023, 69, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, M.; Li, L.; Yang, F.; Xiong, L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem. Photobiol. 2024, 100, 1–12. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Kyung, S.; Ryu, J.; Kang, S.; Park, M.; Lee, C. Metabolite profiling and anti-aging activity of rice koji fermented with Aspergillus oryzae and Aspergillus cristatus: A comparative study. Metabolites 2021, 11, 524. [Google Scholar] [CrossRef]
- Seo, Y.K.; Jung, S.H.; Song, K.Y.; Park, J.K.; Park, C.S. Anti-photoaging effect of fermented rice bran extract on UV-induced normal skin fibroblasts. Eur. Food Res. Technol. 2010, 231, 163–169. [Google Scholar] [CrossRef]
- Iemsam-arng, J.; Surassmo, S.; Mahatnirunkul, T.; Weizman, K.; Kaweeteerawat, C.R.; Panya, A.; Warin, C.; Chomtong, T.; Sukjarernchaikul, P. Exploring the prebiotic potential of fermented glutinous rice filtrate: In vitro skin bacterial balance and biological activities. Ind. Crops Prod. 2024, 207, 117742. [Google Scholar] [CrossRef]
- Sutthanut, K.; Tippayawat, P.; Srijampa, S.; Phoksawat, W.; Vachirodom, P.; Wandee, R. Prebiotic, antipathogenic bacteria, and hypocholesterolemia properties of fermented rice bran extracts derived from black rice and germinated brown rice. Foods 2022, 11, 3704. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, S.H. Skin barrier and calcium. Ann. Dermatol. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- Heinemann, U.; Schuetz, A. Structural features of tight-junction proteins. Int. J. Mol. Sci. 2019, 20, 6020. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Z.; Guo, M.; Zhou, Z. The study of skin hydration, anti-wrinkles function improvement of anti-aging cream with alpha-ketoglutarate. J. Cosmet. Dermatol. 2022, 21, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Jufri, M.; Vardhani, A.; Purwaningsih, E. Evaluating the efficacy of lotion containing black rice bran (Oryza sativa L. indica) extract as a skin brightening agent: A clinical trial. Jundishapur J. Nat. Pharm. Prod. 2021, 16, e114152. [Google Scholar] [CrossRef]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef]
- Chung, H.Y.; Sung, B.; Jung, K.J.; Zou, Y.; Yu, B.P. The molecular inflammatory process in aging. Antioxid. Redox Signal. 2006, 8, 572–581. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Talukdar, M.P.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Rani, N.N.I.M.; Begum, M.Y.; Chidambaram, K.; Nordin, R.; et al. Synbiotic effects of fermented rice on human health and wellness: A natural beverage that boosts immunity. Front. Microbiol. 2022, 13, 950913. [Google Scholar] [CrossRef]
- Ma, W.; Ni, X.; Guo, Y.; Zhang, Y.; Zhu, C.; Li, Y.; Shen, C.; Yuan, B.; Xu, X. Selective fermentation of Lactobacillus and Streptococcus in vitro: Effects of Chinese fermented glutinous rice on the growth promotion of potential probiotics. J. Food Qual. 2021, 2021, 9541725. [Google Scholar] [CrossRef]
Key Bioactive Compounds | General Composition | Typical Compounds |
---|---|---|
Amino acids | 10~30% | Glutamic acid, lysine, glycine, serine |
Peptides | 5~15% | Glutathione, rice peptides |
Organic acids | 5~15% | Lactic acid, citric acid, malic acid |
Polyphenols | 1~5% | Ferulic acid, γ-oryzanol, phytic acid |
Polysaccharides | 15~30% | Mannan, hyaluronic acid, β-glucans |
Vitamins and minerals | 1~5% | Vitamin B, vitamin E, Mg, P, Se, Zn |
Rice Variety | Main Active Ingredients | Skincare Benefits | Model | Reference |
---|---|---|---|---|
Brown rice | Peptides | Antioxidation | UVA-irradiated mouse model | [56] |
Brown rice | Not mentioned | Moisturizing | HaCaT cells | [85] |
Red rice | Peptides, polyphenols, amino acids, and vitamins | Moisturizing, skin barrier repair, and antioxidation | HaCaT cells, 3D epidermal models | [86] |
Rice | α-ketoglutaric acid | Moisturizing and skin barrier repair | NHEKs cell | [87] |
Rice bran | Ferulic acid, arabinose, xylose, and glucose | Antioxidation | DPPH· ABTS+,·OH | [88] |
Black rice | Organic acids and phenolic compounds | Whitening | B16F10 melanoma cells | [89] |
Rice bran | Polyphenolic compounds | Antioxidation and whitening | DPPH, B16F10 melanoma cells | [90] |
Rice bran | γ-aminobutyric acid | Anti-inflammation | LPS-activated macrophage | [91] |
Rice bran | Not mentioned | Anti-inflammation | OVA-induced mouse model | [92] |
Brown rice | Protein, vitamin, mineral, and polyphenols | Anti-inflammation | IMQ-induced mouse model | [93] |
Broken rice | Gallic acid, ascorbic acid, and ferulic acid | UV protection | HSF cells | [94] |
Rice | Succinic acid and choline | UV protection and antioxidation | HDF cells | [95] |
Rice koji | Fatty acids and phenolic compounds | Anti-aging and antioxidation | HDF cells | [96] |
Rice bran | Polyphenolic compounds | Anti-aging and anti-inflammation | HSF cells | [97] |
Glutinous rice | Oligosaccharides | Balance the skin microecology | 2D and 3D skin models | [98] |
Black rice and brown rice | Protein, lipid, and carbohydrate | Balance the skin microecology | In vitro and rats | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Hu, Y.; Wu, M.; Guo, M.; Wang, H. Biologically Active Components and Skincare Benefits of Rice Fermentation Products: A Review. Cosmetics 2025, 12, 29. https://doi.org/10.3390/cosmetics12010029
Yang F, Hu Y, Wu M, Guo M, Wang H. Biologically Active Components and Skincare Benefits of Rice Fermentation Products: A Review. Cosmetics. 2025; 12(1):29. https://doi.org/10.3390/cosmetics12010029
Chicago/Turabian StyleYang, Fan, Yawen Hu, Meihui Wu, Miao Guo, and Hua Wang. 2025. "Biologically Active Components and Skincare Benefits of Rice Fermentation Products: A Review" Cosmetics 12, no. 1: 29. https://doi.org/10.3390/cosmetics12010029
APA StyleYang, F., Hu, Y., Wu, M., Guo, M., & Wang, H. (2025). Biologically Active Components and Skincare Benefits of Rice Fermentation Products: A Review. Cosmetics, 12(1), 29. https://doi.org/10.3390/cosmetics12010029