Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Bromelain
2.2. Sunscreen Cream Formulation
2.3. Physical Examination
2.4. pH Measurements
2.5. Centrifugation
2.6. Viscocity Measurement
2.7. Spreadibility Test
2.8. Adhesion Test
2.9. Cycling Test
2.10. Radical Scavenging Activity DPPH Assay
2.11. Evaluation of UV Filtering Potential
2.12. Animal Treatment
2.13. In Vivo Sunscreen Activity Test
2.14. Irritation Test
2.15. Statistical Analysis
3. Results
3.1. Physicochemical Properties of the Sunscreen Cream Formulation
3.2. Formulation Cream Stability
3.3. Antioxidant Activity
3.4. Photoprotection Activity
3.5. Dermal and Ocular Irritation Assesment
3.5.1. Dermal Irritation
3.5.2. Ocular Irritation
4. Discussion
4.1. Characteristic Sunscreen Cream
4.2. Antioxidant Activity Assay
4.3. Photoprotective and Antioxidant Activity of Bromelain
4.4. Synergistic Effect of Bromelain Combination with UV Filter
4.5. Irritation Potential of Bromelain-Containing Formulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katiyar, S.K.; Elmets, C.A. Green tea polyphenolic antioxidants and skin photoprotection (Review). Int. J. Oncol. 2001, 18, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Debacq-Chainiaux, F.; Leduc, C.; Verbeke, A.; Toussaint, O. UV, stress and aging. Dermatoendocrinology 2012, 4, 236–240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol. Rep. 2017, 4, 245–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shusterove, L.; Romero, J. The Importance of Coral Reefs and How to Ensure Their Longevity, a One Health Approach. VIP 2020, 12. Available online: https://scholarworks.boisestate.edu/vip_2020/12 (accessed on 1 May 2024).
- Napagoda, M.T.; Malkanthi, B.M.A.S.; Abayawardana, S.A.K.; Qader, M.M.; Jayasunghe, L. Photoprotective potential in some medicinalplants used to treat skin diseases in Sri Lanka. BMC Compl. Altern. Med. 2016, 16, 479. [Google Scholar] [CrossRef]
- Rabinovich, L.; Kazlouskaya, V. Herbal sunprotection agents: Human studies. Clin. Dermatol. 2018, 36, 369–375. [Google Scholar] [CrossRef]
- Li, L.Y.; Huang, T.; Lan, C.; Ding, H.; Yan, C.; Dou, Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). J. Photochem. Photobiol. B Biol. 2019, 191, 135–142. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Oliveria Sousa, I.M. In vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing Benitaka grape (Vitis vinifera L.) peel extract. Nat. Prod. Res. 2020, 34, 2677–2682. [Google Scholar] [CrossRef]
- Vostálová, J.; Tinková, E.; Biedermann, D.; Kosina, P.; Ulrichová, J.; Rajnochová Svobodová, A. Skin protective activity of silymarin and its flavonolignans. Molecules 2019, 24, 1022. [Google Scholar] [CrossRef]
- Muzaffer, U.; Paul, V.I.; Prasad, N.R. Protective effect of Juglans regia L. against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. Phytomedicine 2018, 42, 100–111. [Google Scholar] [CrossRef]
- Badan Pusat Statistik. Fruit Plant Production in 2021–2022. Available online: https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html (accessed on 1 May 2024).
- Arshad, Z.I.M.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef] [PubMed]
- Harats, M.; Haik, J.; Cleary, M.; Vashurin, I.; Aviv, U.; Kornhaber, R. A Retrospective Review of an Off-label Bromelain-based Selective Enzymatic Debridement (Nexobrid(R)) in the Treatment of Deep, Partial, and Full Thickness Burns and Hard to Heal Wounds. Isr. Med. Assoc. J. 2020, 22, 83–88. [Google Scholar] [PubMed]
- Badriyya, E.; Salman Pratiwi, A.R.; Dillasamola, D.; Aldi, Y.; Husni, E. Topical AntiInflammatory Activity of Bromelain. Pharmacogn. J. 2020, 12, 1586–1593. [Google Scholar] [CrossRef]
- Bakare, A.O.; Owoyele, B.V. Bromelain reduced pro-inflammatory mediators as a common pathway that mediate antinociceptive and anti-anxiety effects in sciatic nerve ligated Wistar rats. Sci. Rep. 2021, 11, 289. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; Hussien, D.M.; Ghanem, N.F.; Al-Farga, A.M. Bromelain Modulates Liver Injury, Hematological, Molecular, and Biochemical Perturbations Induced by Aluminum via Oxidative Stress Inhibition. Biomed. Res. Int. 2022, 1, 5342559. [Google Scholar] [CrossRef]
- Mori, A.; Lee, W.R. Protective effect of bromelain and pineapple extracts on UV-induced damage in human skin cells. J. Emerg. Investig. 2023, 6, 1–6. [Google Scholar] [CrossRef]
- Esprendor, R.V.F.; Raiser, A.L.; Torres, M.P.R.; Ribeiro, E.B.; Nogueira, R.M.; Andrighetti, C.R.; ValladÃ, D.M. Development and stability study of products containing cupuaçu butter. Sci. Electron. Arch. 2019, 12, 77–85. [Google Scholar]
- Sambasivarao, A.; Rao, C.S.; dan Reddy, H.M. Accelerated stability testing of dosages forms as per international conference of hormozination (ICH) guidelines. World J. Pharm. Med. Res. 2016, 2, 99–103. [Google Scholar]
- Garg, A.; Anggarwal, D.; Garg, S.; dan Singla, A.K. Spreading of Semisolid Formulation: An Update. Pharm. Technol. 2022, 26, 84–104. [Google Scholar]
- Suciati, T.; Aliyandi, A.; Satrialdi. Development of transdermal nanoemulsion formulation for simultaneous delivery of protein vaccine and Artin-M adjuvant. Int. J. Pharm. Pharm. Sci. 2014, 6, 536–541. [Google Scholar]
- Saptarini, N.M.; Rahayu, D.; Herawati, I.E. Antioxidant Activity of Crude Bromelain of Pineapple (Ananas comosus (L.) Merr) Crown from Subang District, Indonesia. J. Pharm. Bioallied. Sci. 2019, 11 (Suppl. S4), S551–S555. [Google Scholar] [CrossRef] [PubMed]
- Mansur, J.S.; Breder, M.N.; Mansur, M.C.; Azulay, R.D. Determination of sun protection factor by spectrophotometry. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Elcistia, R.; Zulkarnain, A.K. Formula Optimization of O/W Cream Combination of Oxybenzone and Titanium Dioxide and Its In Vivo Activity Testing. Maj. Farm. 2018, 14, 63–78. [Google Scholar]
- OECD. Test No. 404: Acute Dermal Irritation/Corrosion, OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD) Publishing: Paris, France, 2015. [Google Scholar]
- OEDa. Test No. 405: Acute Eye Irritation/Corrosion, OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD) Publishing: Paris, France, 2021. [Google Scholar]
- Smith, E.W.; Maibach, H.I.; Surber, C. Use of Emulsions as Topical Drug Delivery Systems. In Pharmaceutical Emulsions and Suspensions; Nielloud, F., Marti-Mestres, G., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 259–270. [Google Scholar]
- Dwi Saryanti, D.K.K. Optimization of the M/A Cream Formula from Kepok Banana Peel Extract (Musa acuminata L.). Department of Pharmaceutical Technology. J. Ris. Kefarmasian Indones. 2019, 1, 19. [Google Scholar]
- Mugitasari, D.E.; Rahmawati, B. Formulation of a cream with Morinda citrifolia L. leaf extract as a ultraviolet protection preparation. J. Keperawatan Dan Kesehat. Masy. 2020, 9, 109–119. [Google Scholar] [CrossRef]
- Mailana, D.; Nuryanti, H. Antioxidant Cream Formulation of Ethanolic Extract from Avocado Leaves (Persea americana Mill.). Acta Pharm. Indones. 2016, 4, 7–15. [Google Scholar]
- Badan Standarisasi Nasional. 16-4399-1996; Sunscreen Formulation. National Standardization Agency: Jakarta, Indonesia, 1996. [Google Scholar]
- Chen, X.; Liang, L.; Han, C. LWT—Food Science and Technology Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay. LWT Food Sci. Technol. 2020, 131, 109769. [Google Scholar] [CrossRef]
- Olugbami, J.; Gbadegesin, M.; Odunola, O. In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. Afr. J. Med. Med. Sci. 2015, 43 (Suppl. S1), 101–109. [Google Scholar]
- Subramanian, R.; Subbramaniyan, P.; Raj, V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. SpringerPlus 2013, 2, 28. [Google Scholar] [CrossRef]
- Kora’c, R.R.; Khambholja, K.M. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn. Rev. 2011, 5, 164–173. [Google Scholar] [CrossRef]
- Sharon, N.; Anam, S.; Yuliet. Formulation of Antioxidant Cream from Ethanol Extract of Wild Garlic (Eleutherine palmifolia L. Merr). Online J. Nat. Sci. 2013, 2, 111–122. [Google Scholar]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2021, 12, 758–791. [Google Scholar] [CrossRef]
- Hallstar. Olivem® 1000 Product Brochure, Hallstar Beauty. 2024. Available online: https://www.hallstarbeauty.com/?s=olivem+1000 (accessed on 14 August 2024).
- Luki’c, M.; Panteli’c, I.; Savi’c, S.D. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Biro, T.; Olah, A.; Toth, B.I.; Szollosi, A.G. Endogenous Factors That Can Influence Skin pH. In pH of the Skin: Issues and Challenges; 2018; Volume 54, pp. 54–63. [Google Scholar]
- Lee, J.H.; Lee, J.B.; Lee, J.T.; Park, H.R.; Kim, J.B. Medicinal effects of bromelain (Ananas comosus) targeting oral environment as an antioxidant and anti-inflammatory agent. J. Food Nutr. Res. 2018, 6, 773–784. [Google Scholar] [CrossRef]
- Agrawal, P.; Nikhade, P.; Patel, A.; Mankar, N.; Sedani, S. Bromelain: A Potent Phytomedicine. Cureus 2022, 14, e27876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, S.; Dixit, R.; Pandey, K.C. Cysteine Proteases: Modesof Activation and Future Prospectsas Pharmacological Targets. Front. Pharmacol. 2016, 7, 107. [Google Scholar] [CrossRef]
- Takahashi, H.; Komatsu, N.; Ibe, M.; Yamamoto, A.I.; Hashimoto, Y.; Iizuka, H. Cystatin A suppresses ultraviolet B-induced apoptosis of keratinocytes. J. Dermatol. Sci. 2007, 46, 179–187. [Google Scholar] [CrossRef]
- Monteiro, A.C.; Schmitz, V.; Svensjo, E.; Gazzinelli, R.T.; Almeida, I.C.; Todorov, A.; de Arruda, L.B.; Torrecilhas, A.C.T.; Pesquero, J.B.; Morrot, A.; et al. Cooperative Activation of TLR2 and Bradykinin B2 Receptor Is Required for Induction of Type 1 Immunity in a Mouse Model of Subcutaneous Infection by Trypanosoma cruzi. J. Immunol. 2006, 177, 6325–6335. [Google Scholar] [CrossRef]
- Chanchal, D.; Swarnlata, S. Herbal photoprotective formulations and their evaluation. Open Nat. Prod. J. 2009, 2, 71–76. [Google Scholar] [CrossRef]
- Pothacharoen, P.; Chaiwongsa, R.; Chanmee, T.; Insuan, O.; Wongwichai, T.; Janchai, P.; Vaithanomsat, P. Bromelain Extract Exerts Antiarthritic Effects via Chondroprotection and the Suppression of TNF-α–Induced NF-κB and MAPK Signaling. Plants 2021, 10, 2273. [Google Scholar] [CrossRef]
- Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Toxicity reduction and MMP-2 stimulation of papain and bromelain loaded in elastic niosomes. J. Biomed. Nanotechnol. 2012, 8, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.A.; Taupik, M.; Djuwarno, E.N.; Papeo, R.P.; Djunaidi, N.N. Burn Wound Healing Test of Bromelain Enzyme Gel Using Carbopol 940 In Vivo. J. Syifa Sci. Clin. Res. 2023, 5, 232–244. [Google Scholar]
Ingredient | F1 (%b/v) | F2 (%b/v) | F3 (%b/v) |
---|---|---|---|
Na EDTA | 0.2 | 0.2 | 0.2 |
Glycerin | 3 | 3 | 3 |
Olivem® 1000 (Cetearyl Olivate, Sorbitan Olivate) | 4 | 4 | 4 |
Flocare SK 425 (Ammonium Polyacryloyldimethyl Taurate) | 1 | 1 | 1 |
Caprylic Capric Triglyceride | 2 | 2 | 2 |
Phenoxyethanol | 0.5 | 0.5 | 0.5 |
Propanediol | 1 | 1 | 1 |
Bromelain | 3 | - | 3 |
Octyl Methoxicinamate (OMC) | - | 5 | 5 |
Aqua | Ad 100 | Ad 100 | Ad 100 |
Wavelength (nm) | EE × I |
---|---|
290 | 0.0150 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3278 |
310 | 0.1864 |
315 | 0.0839 |
320 | 0.0180 |
Parameter (n = 3) | F1 | F2 | F3 |
---|---|---|---|
Appearance | Cream, white to yellowish | Cream, white | Cream, white |
pH | 5.15 ± 0.07 | 5.48 ± 0.169 | 5.225 ± 0.35 |
Viscosity (mPas) | 37,880 ± 565.685 | 59,175 ± 233.345 | 42,420 ± 438.406 |
Centrifugation | Non creaming | Non creaming | Non creaming |
Spreadibility (cm) | 5.55 ± 0.070 | 5.28 ± 0.113 | 5.405 ± 0.035 |
Adhesion (second) | 174 ± 8.485 | 208 ± 7.017 | 197 ± 4.242 |
Parameter (n = 3) | F1 | F2 | F3 | |||
---|---|---|---|---|---|---|
Basal | After 6 Cycle | Basal | After 6 Cycle | Basal | After 6 Cycle | |
Appearance | Cream, white to yellowish | Cream, white to yellowish | Cream, white | Cream, white | Cream, white | Cream, white |
pH | 5.15 ± 0.07 | 4.98 ± 0.014 | 5.48 ± 0.169 | 5.64 ± 0.084 | 5.225 ± 0.176 | 4.99 ± 0.127 |
Viscosity (mPas) | 37,880 ± 565.685 | 42,882.5 ± 17.677 | 59,175 ± 233.345 | 61,162.5 ± 109.620 | 42,920 ± 268.700 | 45,055 ± 205.061 |
Centrifugation | Non creaming | Non creaming | Non creaming | Non creaming | Non creaming | Non creaming |
Spreadibility (cm) | 5.55 ± 0.070 | 5.22 ± 0.035 | 5.28 ± 0.113 | 5.05 ± 0.071 | 5.405 ± 0.035 | 5.2 ± 0 |
Adhesion (second) | 174 ± 8.485 | 178.5 ± 3.536 | 208 ± 7.017 | 212.5 ± 3.536 | 197 ± 4.242 | 200.5 ± 2.121 |
Sample Uji | Concentration (mg/mL) | Absorbance | %Inhibition | Linear Regression Equation | IC50 (mg/mL) |
---|---|---|---|---|---|
Enzyme bromelain | 500 | 0.560 ± 0.002 | −45.469 | y = −26.399x + 132.07 R2 = 0.8899 | 3.180 |
300 | 0.411 ± 0.002 | −9.223 | |||
100 | 0.291 ± 0.057 | 19.822 | |||
50 | 0.228 ± 0.006 | 35.194 | |||
25 | 0.226 ± 0.002 | 35.598 | |||
Bromelain in cream | 500 | 0.377 ± 0.048 | −0.970 | y = −16.454x + 115.89 R2 = 0.7509 | 4.004 |
300 | 0.237 ± 0.004 | 32.847 | |||
100 | 0.157 ± 0.004 | 52.427 | |||
50 | 0.162 ± 0.002 | 51.213 | |||
25 | 0.147 ± 0.002 | 54.692 | |||
Ascorbic Acid | 500 | 0.322 ± 0.007 | 41.564 | y = 15.157x − 10.435 R2 = 0.978 | 3.987 |
300 | 0.306 ± 0.007 | 44.867 | |||
100 | 0.238 ± 0.007 | 59.511 | |||
50 | 0.168 ± 0.003 | 74.730 | |||
25 | 0.117 ± 0.005 | 85.685 |
Sample | SPF Value | |
---|---|---|
In Vitro | In Vivo | |
Cream base | 1.125 ± 0.109 * | 6.34 ± 1.068 * |
Bromelain cream (F1) | 8.180 ± 0.181 * | 11.83 ± 1.879 * |
Sunscreen cream OMC (F2) | 16.082 ± 0.349 * | 16.87 ± 2.799 * |
Sunscreen cream OMC + bromelain (F3) | 22.043 ± 0.277 * | 21.3 ± 2.901 * |
Observation | 1 h | 24 h | 48 h | 72 h | Score |
---|---|---|---|---|---|
Erythema and eschar formation | - | - | - | - | 0 |
Edema formation | - | - | - | - | 0 |
Irritation score | 0 |
Pengamatan | 1 h | 24 h | 48 h | 72 h | Score |
---|---|---|---|---|---|
Cornea | - | - | - | - | 0 |
Iris | - | - | - | - | 0 |
Conjunctiva | - | - | - | - | 0 |
Chemosis | - | - | - | - | 0 |
Irritation score | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marissa, Z.; Mita, S.R.; Kusumawulan, C.K.; Sriwidodo, S. Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study. Cosmetics 2025, 12, 41. https://doi.org/10.3390/cosmetics12020041
Marissa Z, Mita SR, Kusumawulan CK, Sriwidodo S. Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study. Cosmetics. 2025; 12(2):41. https://doi.org/10.3390/cosmetics12020041
Chicago/Turabian StyleMarissa, Zahra, Soraya Ratnawulan Mita, Cahya Khairani Kusumawulan, and Sriwidodo Sriwidodo. 2025. "Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study" Cosmetics 12, no. 2: 41. https://doi.org/10.3390/cosmetics12020041
APA StyleMarissa, Z., Mita, S. R., Kusumawulan, C. K., & Sriwidodo, S. (2025). Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study. Cosmetics, 12(2), 41. https://doi.org/10.3390/cosmetics12020041