Potential of Essential Oil from Siparuna guianensis A. DC. (Siparunaceae) as an Antimicrobial Adjuvant in Topical Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples
2.3. Essential Oil Extraction
2.4. Analysis of the Oil
2.4.1. Gas Chromatography/Mass Spectrometry (GC/MS)
2.4.2. Chromatography Conditions
2.5. Ointment Preparation
2.6. Antibacterial Properties of Essential Oil from the Leaves of S. guianensis
2.6.1. Determination of Minimal Inhibitory Concentration (MIC)
2.6.2. Synergy Testing
2.6.3. Ointment Testing
2.7. Evaluation of Antioxidant Activity of Essential Oil
2.7.1. DPPH Radical Scavenging Assay
2.7.2. ABTS Radical Scavenging Assay
3. Results and Discussion
3.1. Chemical Composition of Siparuna guianensis
3.2. Antimicrobial Assays
3.3. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, L.F.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Caryocar brasiliense supercritical CO2 extract possesses antimicrobial and antioxidant properties useful for personal care products. BMC Complement. Altern. Med. 2014, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.L.; Yoshida, N.C.; Gasques, L.R.T.B.; Leite-Filho, I. Potencial dos frutos do Cerrado para a produção de fitocosméticos. In Árvores, Plantas e Frutos do Cerrado: Aplicações E Possibilidades, 1st ed.; Melo, J.O.F., Damiani, C., Araujo, R.L.B., Lucena, R.F.P., Eds.; Científica Digital: São Paulo, Brazil, 2024; Volume 1, pp. 180–204. [Google Scholar]
- Aldegunde-Louzao, N.; Lolo-Aira, M.; Herrero-Latorre, C. Quality control in cosmetics: A five-year screening survey on the content of phthalates in colognes. Chem. Proc. 2023, 14, 12. [Google Scholar] [CrossRef]
- Nowak, K.; Ratajczak-Wrona, W.; Górska, M.; Jablońska, E. Parabens and their effects on the endocrine system. Mol. Cell. Endocrinol. 2018, 15, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Hager, E.; Chen, J.; Zhao, L. Minireview: Parabens exposure and breast cancer. Int. J. Environ. Res. Public Health 2022, 19, 1873. [Google Scholar] [CrossRef]
- Alsohaimi, I.H.; Khan, M.R.; Ali, H.M.; Azam, M.; Alammari, A.M. Solvent extraction and gas chromatography-mass spectrometric determination of probable carcinogen 1,4-dioxane in cosmetic products. Sci. Rep. 2020, 23, 5214. [Google Scholar] [CrossRef]
- Okereke, J.N.; Udebuani, A.C.; Ezeji, E.U.; Obasi, K.O.; Nnoli, M.C. Possible health implications associated with cosmetics: A review. Sci. J. Public Health 2015, 3, 58–63. [Google Scholar]
- Ratajczak, P.; Landowska, W.; Kopciuch, D.; Paczkowska, A.; Zaprutko, T.; Kus, K. The growing market for natural cosmetics in Poland: Consumer preferences and industry trends. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1877–1892. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics preservation: A review on present strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef]
- Dureja, H.; Kaushik, D.; Gupta, M.; Kumar, V.; Lather, V. Cosmeceuticals: An emerging concept. Indian J. Pharmacol. 2005, 37, 155–159. [Google Scholar] [CrossRef]
- Chermahini, S.H.; Majid, F.A.A.; Sarmidi, M.R. Antioxidant properties of cashew leaves extracts before and after treatment with activated carbon used in cosmetics. J. Med. Plants Res. 2011, 5, 4162–4170. [Google Scholar]
- Kusumawati, I.; Indrayanto, G. Natural antioxidants in cosmetics. In Studies in Natural Products Chemistry, 1st ed.; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, pp. 485–505. [Google Scholar]
- Rybczyńska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Kiersnowska, K.; Bik-Małodzińska, M. Natural compounds with antimicrobial properties in cosmetics. Pathogens 2023, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides—Advances in development of therapeutic applications. Life Sci. 2020, 260, 118407. [Google Scholar] [CrossRef]
- Mansoor, K.; Aburjai, T.; Al-Mamoori, F.; Schmidt, M. Plants with cosmetic uses. Phytother. Res. 2023, 37, 5755–5768. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, M.; Knuth, M.; Beineke, M.; Epe, B. Role of oxidative DNA damage and antioxidative enzymatic defense systems in human aging. Open Anthropol. J. 2008, 1, 38–45. [Google Scholar] [CrossRef]
- Viani, R.A.G.; Rodrigues, R.R. Survival in nursery of native species saplings obtained from natural regeneration of forest fragments. Pesqui. Agropecu. Bras. 2007, 42, 1067–1075. [Google Scholar] [CrossRef]
- Souza, C.D.; Felfili, J.M. The utilization of medicinal plants in the region of Alto Paraíso of Goiás, GO, Brazil. Acta Bot. Bras. 2006, 20, 135–142. [Google Scholar] [CrossRef]
- Valentini, C.M.A.; Rodríguez-Ortíz, C.E.; Coelho, M.F.B. Siparuna guianensis Aublet (negramina): Uma revisão. Rev. Bras. Plantas Med. 2010, 12, 96–104. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; pp. 1–809. [Google Scholar]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Jesus, G.S.; Micheletti, A.C.; Takahashi, K.M.; Matayoshi, T.; Pott, A.; Yoshida, N.C. Antimicrobial potential of Pectis substriata essential oil (Asteraceae) against drug-resistant Staphylococcus strains. An. Acad. Bras. Ciênc. 2020, 92, e20200456. [Google Scholar] [CrossRef]
- Basri, D.F.; Xian, L.W.; Abdul-Shukor, N.I.; Latip, J. Bacteriostatic antimicrobial combination: Antagonistic interaction between epsilon-viniferin and vancomycin against methicillin resistant Staphylococcus aureus. Biomed. Res. Int. 2014, 2014, 461756. [Google Scholar] [CrossRef] [PubMed]
- Ahumada-Santos, Y.P.; Soto-Sotomayor, M.E.; Báez-Flores, M.E.; Díaz-Camacho, P.; López-Angulo, G.; Eslava-Campos, C.A.; Delgado-Vargas, F. Antibacterial synergism of Echeveria subrigida (B. L. Rob & Seaton) and commercial antibiotics against multidrug resistant Escherichia coli and Staphylococcus aureus. Eur. J. Integr. Med. 2016, 8, 638–644. [Google Scholar]
- Solarte, A.L.; Astorga, R.J.; Aguiar, F.; Galán-Relaño, Á.; Maldonado, A.; Huerta, B. Combination of antimicrobials and essential oils as an alternative for the control of Salmonella enterica multiresistant strains related to foodborne disease. Foodborne Pathog. Dis. 2017, 14, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.L.; Hammer, K.; Lim, L.Y.; Hettiarachchi, D.; Locher, C. Optimisation of an agar overlay assay for the assessment of the antimicrobial activity of topically applied semi-solid antiseptic products including honey-based formulations. J. Microbiol. Methods 2022, 202, 106596. [Google Scholar] [CrossRef]
- Yao, H.; Chen, Y.; Shi, P.; Hu, J.; Li, S.; Huang, L.; Lin, J.; Lin, X. Screening and quantitative analysis of antioxidants in the fruits of Livistona chinensis R. Br using HPLC-DAD-ESI/MS coupled with pre-column DPPH assay. Food Chem. 2012, 135, 2802–2807. [Google Scholar] [CrossRef]
- Santos, E.L.; Santana, A.C.; Micheletti, A.C.; Freire, T.V.; Guterres, Z.R.; Yoshida, N.C. Metabolomic profiling and assessment of antimicrobial, antioxidant and genotoxic potential of Unonopsis guatterioides R.E.Fr. (Annonaceae) fruits. Arab. J. Chem. 2023, 16, 105133. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolonization assay. J. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chun, S.S.; Vattem, D.A.; Lin, Y.T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process. Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Tu, P.T.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef]
- Wangsawat, N.; Nahar, L.; Sarker, S.D.; Phosri, C.; Evans, A.R.; Whalley, A.J.S.; Choowongkomon, K.; Suwannasai, N. Antioxidant activity and cytotoxicity against cancer cell lines of the extracts from novel Xylaria species associated with Termite Nests and LC-MS analysis. Antioxidants 2021, 10, 1557. [Google Scholar] [CrossRef]
- Santos, R.M.; Nogueira, K.L.; Chapla, V.M. Chemical composition and antioxidant activity of essential oil from Schinus terebinthifolius and Siparuna guianensis leaves. Rev. Virtual Quim. 2023, 15, 295–300. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Cruz, J.N.; Almeida, C.W.; Silva, S.G.; Brito, M.D.P.; Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; Aguiar, A.E.H.; Carvalho-Junior, R.N. Chemical composition, antimicrobial properties of Siparuna guianensis essential oil and a molecular docking and dynamics molecular study of its major chemical constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.M.G.; Xavier-Júnior, F.H.; Barros, M.R.; Menezes, T.M.; Assis, C.R.D.; Melo, A.C.G.R.; Veras, B.O.; Ferraz, V.P.; Filho, A.A.M.; Yogui, G.T.; et al. Impact on cholinesterase-inhibition and in silico investigations of sesquiterpenoids from Amazonian Siparuna guianensis Aubl. Spectrochim. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119511. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Graças, M.A.J.; Silva, L.F.; Teixeira, M.L.; Valério, R.J.M.; Silva, F.A.C.; Barroso, J.G. Chemical composition and antioxidant activity of essential oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Medicinal plants: Factors of influence on the content of secondary metabolites. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef]
- Hatlen, T.J.; Miller, L.G. Staphylococcal skin and soft tissue infections. Infect. Dis. Clin. N. Am. 2021, 35, 81–105. [Google Scholar] [CrossRef]
- Robb, A.R.; Wright, E.D.; Foster, A.M.E.; Walker, R.; Malone, C. Skin infection caused by a novel strain of Staphylococcus pseudintermedius in a Siberian husky dog owner. JMM Case Rep. 2017, 4, e005087. [Google Scholar] [CrossRef]
- Bhooshan, S.; Negi, V.; Khatri, P.K. Staphylococcus pseudintermedius: An undocumented, emerging pathogen in humans. GMS Hyg. Infect. Control 2020, 15, Doc32. [Google Scholar]
- Kleinschmidt, S.; Huygens, F.; Faoagali, J.; Rathnayake, I.U.; Hafner, L.M. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol. 2015, 10, 1859–1879. [Google Scholar] [CrossRef] [PubMed]
- Akgül, Ö.; Bakan, K. The aerobic bacteria isolated from used cosmetic products and evaluation of antibiotic resistance. J. Fac. Pharm. Ank. Univ. 2021, 45, 156–168. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Farias, P.K.S.; Silva, J.C.R.L.; Souza, C.N.; Fonseca, F.S.A.; Brandi, I.V.; Martins, E.R.; Azevedo, A.M.; Almeida, A.C. Antioxidant activity of essential oils from condiment plants and their effect on lactic cultures and pathogenic bacteria. Cienc. Rural 2019, 49, e20180140. [Google Scholar] [CrossRef]
- Huang, D.; Prior, R.L. The Chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Laosing, S.; Chailapakul, O.; Nacapricha, D. Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified glassy carbon electrode. Talanta 2012, 97, 267–272. [Google Scholar] [CrossRef]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Förster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef]
- Ratz-Lyko, A.; Arct, J.; Pytkowska, K. Methods for evaluation of cosmetic antioxidant capacity. Skin Res. Technol. 2012, 18, 421–430. [Google Scholar] [CrossRef]
- Santos-Sánchez, F.N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidants, 1st ed.; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; Volume 1, pp. 1–28. [Google Scholar]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
Peak | Rt (min) | Compounds | Molecular Formula | RIlit | RIexp | Peak Area (%) |
---|---|---|---|---|---|---|
1 | 5.531 | β-Pinene | C10H16 | 974 | 969 | 0.11 |
2 | 5.794 | Myrcene | C10H16 | 988 | 979 | 3.66 |
3 | 6.780 | Limonene | C10H16 | 1024 | 1026 | 1.16 |
4 | 7.283 | E-Ocimene | C10H16 | 1044 | 1044 | 0.16 |
5 | 14.874 | 2-Undecanona | C11H22O | 1293 | 1293 | 1.76 |
6 | 16.286 | δ-Elemene | C15H24 | 1335 | 1338 | 2.30 |
7 | 17.523 | α-Copaene | C15H24 | 1374 | 1377 | 0.66 |
8 | 17.810 | β-Bourbonene | C15H24 | 1387 | 1386 | 0.40 |
9 | 18.027 | β-Elemene | C15H24 | 1389 | 1393 | 1.88 |
10 | 18.890 | E-Caryophyllene | C15H24 | 1417 | 1421 | 1.31 |
11 | 19.191 | β-Gurjunene | C15H24 | 1431 | 1431 | 0.19 |
12 | 19.312 | γ-Elemene | C15H24 | 1434 | 1435 | 2.11 |
13 | 19.495 | Aromadendrene | C15H24 | 1439 | 1441 | 0.25 |
14 | 19.939 | α-Humulene | C15H24 | 1452 | 1455 | 0.44 |
15 | 20.167 | Allo-aromadendrene | C15H24 | 1458 | 1462 | 0.28 |
16 | 20.560 | Cadina-1(6),4-diene | C15H24 | 1461 | 1476 | 0.17 |
17 | 20.652 | γ-Muurolene | C15H24 | 1478 | 1479 | 0.29 |
18 | 20.802 | Germacrene D | C15H24 | 1484 | 1484 | 21.60 |
19 | 20.948 | β-Selinene | C15H24 | 1489 | 1488 | 0.48 |
20 | 21.292 | Bicyclogermacrene | C15H24 | 1500 | 1500 | 32.52 |
21 | 21.404 | (Z)-α-bisabolene | C15H24 | 1506 | 1504 | 1.11 |
22 | 22.049 | δ-Cadinene | C15H24 | 1522 | 1526 | 1.87 |
23 | 23.052 | Germacrene B | C15H24 | 1559 | 1560 | 6.84 |
24 | 23.649 | Spathulenol | C15H24O | 1577 | 1580 | 1.19 |
25 | 23.833 | Globulol | C15H26O | 1590 | 1587 | 0.80 |
26 | 24.070 | Viridiflorol | C15H26O | 1592 | 1595 | 0.66 |
27 | 25.379 | Isosphatulenol | C15H24O | 1633 | 1642 | 0.99 |
28 | 25.482 | τ-Muurolol | C15H26O | 1640 | 1645 | 0.95 |
29 | 25.597 | α-Muurolol | C15H26O | 1644 | 1649 | 1.97 |
30 | 25.830 | α-Cadinol | C15H26O | 1652 | 1658 | 2.14 |
Total identified (%) | 90.25 | |||||
Monoterpene hydrocarbons (%) | 5.09 | |||||
Sesquiterpene hydrocarbons (%) | 74.70 | |||||
Oxygenated sesquiterpenes (%) | 8.70 | |||||
Others (%) | 1.76 |
Pathogens | Sample/Combination | Individual MIC | Combined MIC | FIC | FICI | Effect |
---|---|---|---|---|---|---|
Staphylococcus epidermidis (A) | EO | 500 | 62.5 | 0.125 | ||
AMP | 6.25 | 1.56 | 0.25 | Synergism | ||
EO + AMP | 0.375 | |||||
EO | 500 | 31.25 | 0.06 | |||
GENTA | 100 | 50 | 0.5 | Additivity | ||
EO + GENTA | 0.506 | |||||
Staphylococcus epidermidis (B) | EO | 1000 | 31.25 | 0.125 | ||
AMP | 3.125 | 1.56 | 0.25 | Additivity | ||
EO + AMP | - | - | 0.503 | |||
EO | 1000 | 250 | 0.25 | |||
GENTA | 6.25 | 1.56 | 0.25 | Synergism | ||
EO + GENTA | 0.5 | |||||
Staphylococcus aureus | EO | ≥1000 | 62.5 | 0.06 | ||
AMP | 3.125 | 0.78 | 2.5 | Synergism | ||
EO + AMP | 0.256 | |||||
Staphylococcus pseudointermedius | EO | ≥1000 | 31,25 | 0.03 | ||
AMP | 50 | 25 | 0.5 | Additivity | ||
EO + AMP | 0.503 |
Sample | Ointment Formulation | Antimicrobial Activity (Inhibition Zones) | |
---|---|---|---|
S. aureus | S. epidermidis | ||
1 | 0.5 mg GENTA + 2.5 mg EO/g | 14 mm | N.O. |
2 | 1 mg GENTA + 2.5 mg EO/g | 18 mm | N.O. |
3 | 0.5 mg GENTA + 10 mg EO/g | 20 mm | N.O. |
4 | 1 mg GENTA + 10 mg EO/g | N.O. | N.O. |
5 | 2 mg GENTA + 10 mg EO/g | 19 mm | 10 mm |
6 | 1 mg GENTA + 20 mg EO/g | 22 mm | 10 mm |
7 | 0.5 mg GENTA/g | 15 mm | N.O. |
8 | 1 mg GENTA/g | 19 mm | N.O. |
9 | 2 mg GENTA/g | 22 mm | 15 mm |
Sample | Antioxidant Activities (IC50, µg.mL−1) | |
---|---|---|
DPPH | ABTS | |
EO | >500 | >500 |
BHT a | - | 29.38 |
Ascorbic acid a | 37.15 | - |
TROLOX a | 27.02 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, É.L.; Siqueira, J.M.F.; da Silva de Jesus, G.; Micheletti, A.C.; Yoshida, N.C. Potential of Essential Oil from Siparuna guianensis A. DC. (Siparunaceae) as an Antimicrobial Adjuvant in Topical Formulations. Cosmetics 2025, 12, 81. https://doi.org/10.3390/cosmetics12020081
dos Santos ÉL, Siqueira JMF, da Silva de Jesus G, Micheletti AC, Yoshida NC. Potential of Essential Oil from Siparuna guianensis A. DC. (Siparunaceae) as an Antimicrobial Adjuvant in Topical Formulations. Cosmetics. 2025; 12(2):81. https://doi.org/10.3390/cosmetics12020081
Chicago/Turabian Styledos Santos, Érica Luiz, Juliana Mendes Franco Siqueira, Genilson da Silva de Jesus, Ana Camila Micheletti, and Nídia Cristiane Yoshida. 2025. "Potential of Essential Oil from Siparuna guianensis A. DC. (Siparunaceae) as an Antimicrobial Adjuvant in Topical Formulations" Cosmetics 12, no. 2: 81. https://doi.org/10.3390/cosmetics12020081
APA Styledos Santos, É. L., Siqueira, J. M. F., da Silva de Jesus, G., Micheletti, A. C., & Yoshida, N. C. (2025). Potential of Essential Oil from Siparuna guianensis A. DC. (Siparunaceae) as an Antimicrobial Adjuvant in Topical Formulations. Cosmetics, 12(2), 81. https://doi.org/10.3390/cosmetics12020081