Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Oil Extraction
2.3. UHPLC–ESI–Q-TOF–MS Analysis
2.4. In Silico Prediction of Biological Activities
2.5. Preparation of Blackberry Seed Oil-Loaded Nanocapsules (NCBSO)
2.5.1. Characterization of Blackberry Seed Oil-Loaded Nanocapsules (NCBSO)
Physicochemical Characterization of Nanocapsules
Analysis by Scanning Electron Microscopy Coupled with Field Emission (FE-SEM)
2.6. Study of Physicochemical Stability of the NCBSO and NC-C
2.7. Cell Culture
2.7.1. MTT Cytotoxicity Assay
2.7.2. Collagen Production Assay
2.8. Statistical Analysis
3. Results
3.1. Chemical Characterization of the Blackberry Seeds Oils
3.2. In Silico Prediction of Biological Activities
3.3. Nanocapsules Characterization
3.3.1. Determination of Mean Diameter, Polydispersity Index (PDI), and Zeta Potential of NCs
3.3.2. Analysis by Scanning Electron Microscopy Coupled with Field Emission (FE-SEM)
3.4. Study of Physicochemical Stability of NCBSO and NC-C
3.5. MTT Cytotoxicity Assay
3.6. Collagen Production Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekiert, H.M.; Szopa, A. Biological Activities of Natural Products. Molecules 2020, 25, 5769. [Google Scholar] [CrossRef] [PubMed]
- Meza, D.; Li, W.H.; Seo, I.; Parsa, R.; Kaur, S.; Kizoulis, M.; Southall, M.D. A Blackberry-Dill Extract Combination Synergistically Increases Skin Elasticity. Int. J. Cosmet. Sci. 2020, 42, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.P.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Blackberry (Rubus fruticosus L.) Residues: A Comparison with Conventional Methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Correa, M.S.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Scheer, A.P.; Ribani, R.H. Pressurized Extraction of High-Quality Blackberry (Rubus spp. Xavante Cultivar) Seed Oils. J. Supercrit. Fluids 2021, 176, 105101. [Google Scholar] [CrossRef]
- Maluf, D.F. Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. Cosmetics 2018, 5, 46. [Google Scholar] [CrossRef]
- Lammari, N.; Demautis, T.; Louaer, O.; Meniai, A.H.; Casabianca, H.; Bensouici, C.; Devouassoux, G.; Fessi, H.; Bentaher, A.; Elaissari, A. Nanocapsules Containing Saussurea lappa Essential Oil: Formulation, Characterization, Antidiabetic, Anti-Cholinesterase and Anti-Inflammatory Potentials. Int. J. Pharm. 2021, 593, 120138. [Google Scholar] [CrossRef]
- Correa, M.S.; Boschen, N.L.; Rodrigues, P.R.P.; Corazza, M.L.; Scheer, A.P.; Ribani, R.H. Supercritical CO2 with Co-Solvent Extraction of Blackberry (Rubus spp. Xavante Cultivar) Seeds. J. Supercrit. Fluids 2022, 189, 105702. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials 2020, 10, 926. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; Freitas, L.L.; Pohlmann, A.R. Characterization and Physicochemical Stability of Nanoparticulate Polymeric Systems for Drug Delivery. Química Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Jarai, B.M. Polymeric Nanoparticles. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 308–324. [Google Scholar]
- Carter, P.; Narasimhan, B.; Wang, Q. Biocompatible Nanoparticles and Vesicular Systems in Transdermal Drug Delivery for Various Skin Diseases. Int. J. Pharm. 2019, 555, 49–62. [Google Scholar] [CrossRef]
- Mordorski, B.; Landriscina, A.; Friedman, A. Chapter 3—An Overview of Nanomaterials in Dermatology. In Nanoscience in Dermatology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 31–46. [Google Scholar]
- Pires, P.C.; Mascarenhas-Melo, F.; Pedrosa, K.; Lopes, D.; Lopes, J.; Soares, A.M.; Peixoto, D.; Giram, P.S.; Veiga, F.; Santos, A.C.P. Polymer-based Biomaterials for Pharmaceutical and Biomedical Applications: A Focus on Topical Drug Administration. Eur. Polym. J. 2023, 187, 868. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Nourbakhsh, M.S. Electrospun Polycaprolactone Scaffolds for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2018, 68, 527–539. [Google Scholar] [CrossRef]
- Abdul-Hammed, M.; Adedotun, I.O.; Akinboade, M.W.; Adegboyega, T.A.; Salaudeen, O.M. Antibacterial activities, PASS prediction and ADME analysis of phytochemicals from Curcubita moschata, Curcubita maxima, and Irvingia gabonensis: Insights from in silico studies. In Silico Pharmacology. 2024, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bustos-Salgado, P.; Andrade-Carrera, B.; Domínguez-Villegas, V.; Díaz-Garrido, N.; Rodríguez-Lagunas, M.J.; Badía, J.; Baldomà, L.; Mallandrich, M.; Calpena-Campmany, A.; Garduño-Ramírez, M.L. Screening Anti-Inflammatory Effects of Flavanones Solutions. Int. J. Mol. Sci. 2021, 22, 8878. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nature Biotech. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Fetzer, D.L.; Cruz, P.N.; Hamerski, F.; Corazza, M.L. Extraction of Baru (Dipteryx alata Vogel) Seed Oil Using Compressed Solvents Technology. J. Supercrit. Fluids 2018, 137, 23–33. [Google Scholar] [CrossRef]
- Lei, T.; Ye, L.; Pei, Y.; Sun, H.; Guo, C. Applications of Elastin in Cosmetics: Prospects and Challenges. Cosmetics 2025, 12, 18. [Google Scholar] [CrossRef]
- Molinspiration Cheminformatics. Molecular Property Calculation Services and Bioactivity Scores—User Manual. 2018. Available online: https://www.molinspiration.com (accessed on 10 June 2025).
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule Formation by Interfacial Polymer Deposition Following Solvent Displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Banco de Células do Rio de Janeiro (BCRJ). CCD1072Sk. BCRJ: Rio de Janeiro, Brasil. Available online: https://bcrj.org.br/celula/ccd-1072sk/ (accessed on 9 July 2025).
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Yanovska, A.; Husak, Y.; Mishchenko, O.; Gudakov, A.; Oleshko, O.; Yusupova, A.; Vielikov, M.; Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; et al. Cell Viability and Collagen Deposition on Hydroxyapatite Coatings Formed on Pretreated Substrates. Mater. Chem. Phys. 2021, 258, 123978. [Google Scholar] [CrossRef]
- Chassot, J.M.; Ribas, D.; Silveira, E.F.; Gruenspan, L.D.; Pires, C.C.; Farago, P.V.; Braganhol, E.; Tasso, L.; Cruz, L. Beclomethasone dipropionate-loaded polymeric nanocapsules: Development, in vitro cytotoxicity, and in vivo evaluation of acute lung injury. J. Nanosci. Nanotechnol. 2015, 15, 855–864. [Google Scholar] [CrossRef]
- Flores, F.C.; Ribeiro, R.F.; Ourique, A.F.; Rolim, C.M.B.; da Silva, C.B.; Pohlmann, A.R.; Beck, R.C.R.; Guterres, S.S. Nanostructured Systems Containing an Essential Oil: Protection Against Volatilization. Química Nova 2011, 34, 968–972. [Google Scholar] [CrossRef]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current Status and Future Prospects of Nanotechnology in Cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Brum, A.A.S.; dos Santos, P.P.; da Silva, M.M.; Paese, K.; Guterres, S.S.; Costa, T.M.H.; Pohlmann, A.R.; Jablonski, A.; Flôres, S.H.; Rios, A.O. Lutein-Loaded Lipid-Core Nanocapsules: Physicochemical Characterization and Stability Evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 477–484. [Google Scholar] [CrossRef]
- Fraj, A.; Jaâfar, F.; Marti, M.; Coderch, L.; Ladhari, N. A Comparative Study of Oregano (Origanum vulgare L.) Essential Oil-Based Polycaprolactone Nanocapsules/Microspheres: Preparation, Physicochemical Characterization, and Storage Stability. Ind. Crops Prod. 2019, 140, 111669. [Google Scholar] [CrossRef]
- Camargo, G.A.; Costa Filha, A.R.C.; Lyra, A.M.; Novatski, A.; Nadal, J.M.; de Lara, L.S.; Dias, D.T.; do Nascimento, E.A.; Silva, U.R.; Jacinto, C.; et al. Stability Testing of Tacrolimus-Loaded Poly(ε-caprolactone) Nanoparticles by Physicochemical Assays and Raman Spectroscopy. Vib. Spectrosc. 2020, 111, 103139. [Google Scholar] [CrossRef]
- ISO 10993-5; Tests for In Vitro Cytotoxicity. In Biological Evaluation of Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2009; p. 42.
- Gonçalves, M.M.; Junkert, A.M.; Adam, L.M.; Marcondes, T.V.B.; Adão, K.E.M.; Shimizu, P.H.; Pontarolo, R.; Maluf, D.F. Lavandula angustifolia Essential Oil-Loaded Nanocapsules and Biological Activity on Fibroblasts. Int. J. Dev. Res. 2021, 11, 46106–46110. [Google Scholar]
- Codevilla, C.F.; Bazana, M.T.; Silva, C.B.; Barin, J.S.; Menezes, C.R. Nanostructures Containing Bioactive Compounds Extracted from Plants. Ciência E Nat. 2015, 37, 142–151. [Google Scholar]
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Setapar, S.H.M.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Ibrahim, M.N.M. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott Fruits: A Detailed Study of Its Nutritional, Chemical and Bioactive Properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues cv. Tupy. J. Food Qual. 2018, 2018, 950761. [Google Scholar] [CrossRef]
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef]
- Cadi, H.E.; Bouzidi, H.E.; Selama, G.; Ramdan, B.; El Majdoub, Y.O.; Alibrando, F.; Brigui, J.; Altemimi, A.B.; Dugo, P.; Mondello, L.; et al. Characterization of Rubus fruticosus L. Berries Growing Wild in Morocco: Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Eur. Food Res. Technol. 2021, 247, 1689–1699. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic Compounds and Antioxidant Capacity of Georgia-Grown Blueberries and Blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic Acid Profiles in Some Small Berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef]
- Carvalho, F.; Lahlou, R.A.; Silva, L.R. Phenolic Compounds from Cherries and Berries for Chronic Disease Management and Cardiovascular Risk Reduction. Nutrients 2024, 16, 1597. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Betta, F.D.; Nehring, P.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Blackberry (Rubus ulmifolius Schott): Chemical Composition, Phenolic Compounds and Antioxidant Capacity in Two Edible Stages. Food Res. Int. 2019, 122, 627–634. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Prior, R.L. Ellagitannin Composition of Blackberry as Determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Khayata, N.; Abdelwahed, W.; Chehna, M.F.; Charcosset, C.; Fessi, H. Preparation of Vitamin E Loaded Nanocapsules by the Nanoprecipitation Method: From Laboratory Scale to Large Scale Using a Membrane Contactor. Int. J. Pharm. 2012, 423, 419–427. [Google Scholar] [CrossRef]
- Byun, Y.; Hwang, J.B.; Bang, S.H.; Darby, D.; Cooksey, K.; Dawson, P.L.; Park, H.J.; Whiteside, S. Formulation and Characterization of α-Tocopherol Loaded Poly-ε-Caprolactone (PCL) Nanoparticles. LWT—Food Sci. Technol. 2011, 44, 24–28. [Google Scholar] [CrossRef]
- Markwalter, C.E.; Pagels, R.F.; Wilson, B.K.; Ristroph, K.D.; Prud’homme, R.K. Flash Nanoprecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles. J. Vis. Exp. 2019, 143, e58757. [Google Scholar] [CrossRef]
- Bhatia, S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In Natural Polymer Drug Delivery Systems; Springer: Singapore, 2016; Volume 1, pp. 33–93. [Google Scholar] [CrossRef]
- Campos, P.M.; Praça, F.G.; Mussi, S.V.; Figueiredo, S.A.; Fantini, M.C.A.; Fonseca, M.J.V.; Torchilin, V.P.; Bentley, M.V.L.B. Liquid Crystalline Nanodispersion Functionalized with Cell-Penetrating Peptides Improves Skin Penetration and Anti-Inflammatory Effect of Lipoic Acid After In Vivo Skin Exposure to UVB Radiation. Drug Deliv. Transl. Res. 2020, 10, 1810–1828. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Wendtner, M.H.; Korting, H.C. The pH of the Skin Surface and Its Impact on the Barrier Function. Ski. Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.; Cervi, V.F.; Sari, M.H.M.; Barbieri, A.V.; Ramos, A.P.; Copetti, P.M.; de Brum, G.F.; Nascimento, K.; Nadal, J.M.; Farago, P.V.; et al. Diphenyl Diselenide Loaded Poly(ε-caprolactone) Nanocapsules with Selective Antimelanoma Activity: Development and Cytotoxic Evaluation. Mater. Sci. Eng. C 2018, 91, 1–9. [Google Scholar] [CrossRef]
- Kalita, S.; Devi, B.; Kandimalla, R.; Sharma, K.K.; Sharma, A.; Kalita, K.; Kataki, A.C.; Kotoky, J. Chloramphenicol Encapsulated in Poly-ε-caprolactone-Pluronic Composite Nanoparticles for Treatment of MRSA-Infected Burn Wounds. Int. J. Nanomed. 2015, 10, 2971–2984. [Google Scholar] [CrossRef]
- Pinto, E.P.; da Costa, S.O.A.M.; D’Haese, C.; Nysten, B.; Machado, F.P.; Rocha, L.M.; de Souza, T.M.; Beloqui, A.; Machado, R.R.; Araújo, R.S. Poly-ε-caprolactone Nanocapsules Loaded with Copaiba Essential Oil Reduce Inflammation and Pain in Mice. Int. J. Pharm. 2023, 642, 123147. [Google Scholar] [CrossRef]
- Mansoor, A.; Khurshid, Z.; Mansoor, E.; Khan, M.T.; Ratnayake, J.; Jamal, A. Effect of Currently Available Nanoparticle Synthesis Routes on Their Biocompatibility with Fibroblast Cell Lines. Molecules 2022, 27, 6972. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Boba, A.; Rój, E.; Gorczyca, D.; Prescha, A. Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. Oxidative Med. Cell. Longev. 2021, 2021, 5561672. [Google Scholar] [CrossRef]
- Józsa, L.; Vasvári, G.; Sinka, D.; Nemes, D.; Ujhelyi, Z.; Vecsernyés, M.; Váradi, J.; Fenyvesi, F.; Lekli, I.; Gyöngyösi, A.; et al. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. Molecules 2022, 27, 6652. [Google Scholar] [CrossRef] [PubMed]
- Morais, N.S.; Passos, T.S.; Ramos, G.R.; Ferreira, V.A.F.; Moreira, S.M.G.; Filho, G.P.C.; Barreto, A.P.G.; Leite, P.I.P.; de Almeida, R.S.; Paulo, C.L.R.; et al. Nanoencapsulation of Buriti Oil (Mauritia flexuosa L.f.) in Porcine Gelatin Enhances the Antioxidant Potential and Improves the Effect on the Antibiotic Activity Modulation. PLoS ONE 2022, 17, e0265649. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, D.S.; Joseph, J.; Vineeth, C.A.; John, A.; Abraham, A. Green Synthesis of Cuminum cyminum Silver Nanoparticles: Characterizations and Cytocompatibility with Lapine Primary Tenocytes. J. Biosci. 2021, 46, 23. [Google Scholar] [CrossRef]
- Tavasoli, M.; Tatari, M.; Samadi Kazemi, M.; Taghizadeh, S.F. In Vitro Cytotoxicity of Cuminum cyminum Essential Oil Loaded SLN Nanoparticle. Nanomed. J. 2022, 9, 255–260. [Google Scholar]
- Aksoy, H.; Demirbağ, Ç.; Şen, A.; Şekerler, T.; Özakpınar, Ö.; Şener, A.; Tetik, S. Evaluation of Biochemical Parameters in Rubus tereticaulis Treated Rats and Its Implications in Wound Healing. Mol. Cell. Biochem. 2020, 472, 67–78. [Google Scholar] [CrossRef]
- Hajialyani, M.; Tewari, D.; Sobarzo-Sánchez, E.; Nabavi, S.M.; Farzaei, M.H.; Abdollahi, M. Natural Product-Based Nanomedicines for Wound Healing Purposes: Therapeutic Targets and Drug Delivery Systems. Int. J. Nanomed. 2018, 13, 5023–5043. [Google Scholar] [CrossRef]
- Pires, J.; Cargnin, S.T.; Costa, S.A.; Sinhorin, V.D.G.; Damazo, A.S.; Sinhorin, A.P.; Bicudo, R.C.; Cavalheiro, L.; Valladão, D.M.S.; Pohlmann, A.R.; et al. Healing of Dermal Wounds Property of Caryocar brasiliense Oil Loaded Polymeric Lipid-Core Nanocapsules: Formulation and In Vivo Evaluation. Eur. J. Pharm. Sci. 2020, 150, 105356. [Google Scholar] [CrossRef]
Peak no.° | Rt a (min) | Precursor Ion [M-H−] m/z | Possible Compound | Compound Classification |
---|---|---|---|---|
1 | 0.2 | 207.00 | 3,4-Dimethoxycinnamic acid | Phenolic acid |
2 | 0.6 | 939.10 | Pentagalloyl glucose | Gallotannin |
3 | 0.6 | 935.34 | Casuarictin/potentillin | Ellagitannin |
4 | 0.9 | 209.00 | 5-Hydroxyferulic acid | Hydroxycinnamic acid |
5 | 2.1 | 290.05 | (-)-Catechin | Flavonoid |
6 | 2.4 | 115.00 | Fumaric acid | Phenolic acid |
7 | 2.6 | 469.01 | Valoneic acid dilactone | Hydrolyzable tannin |
8 | 2.9 | 279.45 | Linoleic acid | Unsaturated fatty acid |
9 | 3.2 | 567.89 | Lutein/zeaxanthin | Carotenoid |
Compound | Pa (Antioxidant) | Pa (Collagen Production) | Pa (Elastin Synthesis) | Pa (Anti-Aging Effect) |
---|---|---|---|---|
Pentagalloyl glucose | 0.70 | 0.99 | 0.45 | 0.96 |
Casuarictin/potentillin | 0.70 | 0.99 | 0.45 | 0.96 |
Valoneic acid dilactone | 0.70 | 0.95 | 0.45 | 0.95 |
(-)-Catechin | 0.70 | 0.77 | 0.47 | 0.92 |
Fumaric acid | 0.73 | 0.66 | 0.45 | 0.91 |
Lutein/zeaxanthin | 0.91 | 0.43 | 0.50 | 0.91 |
3,4-Dimethoxycinnamic acid | 0.72 | 0.61 | 0.48 | 0.90 |
5-Hydroxyferulic acid | 0.70 | 0.67 | 0.46 | 0.90 |
Linoleic acid | 0.81 | 0.53 | 0.46 | 0.90 |
Formulation | Diameter (nm) | Polydispersity Index (PDI) | Zeta Potential ± SD (mV) | pH |
---|---|---|---|---|
NCBSO | 266.75 ± 2.01 | 0.09 ± 0.01 | – 30.40 ± 0.30 | 5.51 ± 0.38 |
NC-C | 243.17 ± 3.88 | 0.09 ± 0.01 | – 27.93 ± 1.08 | 5.37 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maluf, D.F.; Lopes, B.A.; Miranda, M.D.; Teixeira, L.C.; Horacio, A.P.; Jansen, A.; Correa, M.S.; Camargo, G.d.A.; Nadal, J.M.; Manfron, J.; et al. Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare. Cosmetics 2025, 12, 159. https://doi.org/10.3390/cosmetics12040159
Maluf DF, Lopes BA, Miranda MD, Teixeira LC, Horacio AP, Jansen A, Correa MS, Camargo GdA, Nadal JM, Manfron J, et al. Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare. Cosmetics. 2025; 12(4):159. https://doi.org/10.3390/cosmetics12040159
Chicago/Turabian StyleMaluf, Daniela F., Brenda A. Lopes, Mariana D. Miranda, Luana C. Teixeira, Ana P. Horacio, Amanda Jansen, Madeline S. Correa, Guilherme dos Anjos Camargo, Jessica Mendes Nadal, Jane Manfron, and et al. 2025. "Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare" Cosmetics 12, no. 4: 159. https://doi.org/10.3390/cosmetics12040159
APA StyleMaluf, D. F., Lopes, B. A., Miranda, M. D., Teixeira, L. C., Horacio, A. P., Jansen, A., Correa, M. S., Camargo, G. d. A., Nadal, J. M., Manfron, J., Döll-Boscardin, P. M., & Farago, P. V. (2025). Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare. Cosmetics, 12(4), 159. https://doi.org/10.3390/cosmetics12040159