Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Profile
2.2. Skin Sampling Method and Investigation of Endogenous Skin Volatile Emisisons
2.3. Gas Chromatography-Mass Spectrometry
2.4. Investigating Modulation of Skin Volatile Profiles after Fragrance Application
3. Results and Discussion
3.1. Endogenous Skin Volatile Profiles
3.2. Investigating the Modulation of Skin Volatile Profiles after Fragrance Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kippenberger, S.; Havlíček, J.; Bernd, A.; Thaçi, D.; Kaufmann, R.; Meissner, M. “Nosing Around” the human skin: What information is concealed in skin odour? Exp. Dermatol. 2012, 21, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, A.; Gabbanini, S.; Beltramini, C.; Lucchi, E.; Valgimigli, L. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations. Skin Res. Technol. 2009, 15, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, E.; Guzman, K.D.; Wallace, R.; Murphy, R.; Morrin, A.; Duffy, E.; Guzman, K.D.; Wallace, R.; Murphy, R.; Morrin, A. Non-Invasive Assessment of Skin Barrier Properties: Investigating Emerging Tools for In Vitro and In Vivo Applications. Cosmetics 2017, 4, 44. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid volatolomics and disease detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef] [PubMed]
- Dormont, L.; Bessière, J.-M.; McKey, D.; Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 2013, 216, 2783–2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prada, P.; Furton, K. Human Scent Detection: A Review of its Developments and Forensic Applications. Rev. Cienc. Forenses 2008, 1, 81–87. [Google Scholar]
- Mochalski, P.; Ruzsanyi, V.; Wiesenhofer, H.; Mayhew, C.A. Instrumental sensing of trace volatiles-a new promising tool for detecting the presence of entrapped or hidden people. J. Breath Res. 2018, 12, 027107. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008, 159, 780–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission rates of selected volatile organic compounds from skin of healthy volunteers. J. Chromatogr. B 2014, 959, 62–70. [Google Scholar] [CrossRef] [PubMed]
- de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Dormont, L.; Bessière, J.-M.; Cohuet, A. Human skin volatiles: A review. J. Chem. Ecol. 2013, 39, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Holland, K.T.; Gribbon, E.M. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Bacteriol. 1988, 65, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Mendez, E.; Furton, K.G. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J. Forensic Sci. 2013, 58, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Syed, Z.; Leal, W.S. Acute olfactory response of Culex mosquitoes to a human-and bird-derived attractant. Proc. Natl. Acad. Sci. USA 2009, 106, 18803–18808. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Saito, K.; Kato, H.; Masuda, K. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis. Bioanalysis 2013, 5, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Parekh, B.; Walton, C.; Spanel, P.; Smith, D.; Evans, M. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Havlicek, J.; Saxton, T. New Research on Food Habits. In The Effect of Diet on Human Bodily Odors; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 35–44. [Google Scholar]
- Mebazaa, R.; Rega, B.; Camel, V. Analysis of human male armpit sweat after fenugreek ingestion: Characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chem. 2011, 128, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Perfumes Market: Global Industry Analysis and Opportunity Assessment, 2016–2026; Future Market Insights: Valley Cottage, NY, USA.
- Baydar, A.; McGee, T.; Purzycki, K.L. Skin Odor Value Technology for Fragrance Performance Optimization. Perfum. Flavorist 1995, 20, 45–53. [Google Scholar]
- Lin, L.; Nufer, K.; Tomihara, S.; Prow, T.; Lin, L.L.; Nufer, K.L.; Tomihara, S.; Prow, T.W. Non-Invasive Nanoparticle Imaging Technologies for Cosmetic and Skin Care Products. Cosmetics 2015, 2, 196–210. [Google Scholar] [CrossRef]
- Venturini, M.; Zanca, A.; Calzavara-Pinton, P.; Venturini, M.; Zanca, A.; Calzavara-Pinton, P. In Vivo Non-Invasive Evaluation of Actinic Keratoses Response to Methyl-Aminolevulinate-Photodynamic Therapy (MAL-PDT) by Reflectance Confocal Microscopy. Cosmetics 2014, 1, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Duffy, E.; Jacobs, M.R.; Kirby, B.; Morrin, A. Probing skin physiology through the volatile footprint: Discriminating volatile emissions before and after acute barrier disruption. Exp. Dermatol. 2017, 26, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Pawliszyn, J. A critical review in calibration methods for solid-phase microextraction. Anal. Chim. Acta 2008, 627, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Handbook of Solid Phase Microextraction; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-391449-1. [Google Scholar]
- Behan, J.M.; Macmaster, A.P.; Perring, K.D.; Tuck, K.M. Insight into how skin changes perfume. Int. J. Cosmet. Sci. 1996, 18, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Wenig, P.; Odermatt, J. OpenChrom: A cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinform. 2010, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. Lipid oxidation. Prog. Lipid Res. 1980, 19, 1–22. [Google Scholar] [CrossRef]
- Wells, J.R.; Morrison, G.C.; Coleman, B.K. Kinetics and Reaction Products of Ozone and Surface-Bound Squalene. J. ASTM Int. 2008, 5, 1–12. [Google Scholar] [CrossRef]
- Fruekilde, P.; Hjorth, J.; Jensen, N.R.; Kotzias, D.; Larsen, B. Ozonolysis at vegetation surfaces: A source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere. Atmos. Environ. 1998, 32, 1893–1902. [Google Scholar] [CrossRef]
- Kostyuk, V.; Potapovich, A.; Stancato, A.; De Luca, C.; Lulli, D.; Pastore, S.; Korkina, L. Photo-Oxidation Products of Skin Surface Squalene Mediate Metabolic and Inflammatory Responses to Solar UV in Human Keratinocytes. PLoS ONE 2012, 7, e44472. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.; Bertschi, L. Models to assess perfume diffusion from skin. Int. J. Cosmet. Sci. 2001, 23, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Yamamoto, Y. Electrical properties of the epidermal stratum corneum. Med. Biol. Eng. 1976, 14, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Curran, A.M.; Ramirez, C.F.; Schoon, A.A.; Furton, K.G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B 2007, 846, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.O.; Weldegergis, B.T.; Menger, D.; Takken, W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci. Rep. 2016, 6, 27141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | CAS | F1 | F2 | F3 | F4 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|---|---|---|---|
Hexanal | 66-25-1 | × | × | × | × | × | × | × | × |
Benzaldehyde | 100-52-7 | × | × | × | × | × | |||
6-Methyl-5-hepten-2-one | 110-93-0 | × | × | × | × | × | × | × | × |
2,6-Dimethyl-2,6-octadiene | 2792-39-4 | × | × | × | × | ||||
Octanal | 124-13-0 | × | × | × | × | × | × | × | × |
Nonanal | 124-19-6 | × | × | × | × | × | × | × | × |
Octanoic acid | 124-07-2 | × | |||||||
Decanal | 112-31-2 | × | × | × | × | × | × | × | × |
2-Decenal | 2497-25-8 | × | × | × | × | × | × | ||
Nonanoic acid | 112-05-0 | × | × | × | × | × | × | × | × |
Undecanal | 112-44-7 | × | × | × | × | × | × | × | × |
2-Undecenal | 2463-77-6 | × | × | × | |||||
n-Decanoic acid | 334-48-5 | × | × | × | × | × | × | × | × |
Geranyl acetone | 689-67-8 | × | × | × | × | × | × | × | × |
1-Dodecanol | 112-53-8 | × | × | × | |||||
Tetradecanal | 124-25-4 | × | × | × | × | × | × | × | × |
Pentadecanal | 2765-11-9 | × | × | ||||||
Tetradecanoic acid | 544-63-8 | × | × | × | × | × | × | × | × |
Pentadecanoic acid | 1002-84-2 | × | × | × | × | × | × | ||
9-Hexadecenoic acid | 2091-29-4 | × | × | × | × | × | × | × | × |
n-Hexadecanoic acid | 57-10-3 | × | × | × | × | × | × | × | × |
Isopropyl palmitate | 142-91-6 | × | × | × | × | × | × | × | × |
Octadecanoic acid | 57-11-4 | × | × | ||||||
Squalane * | 111-01-3 | × | × | × | × | × | × |
Compound | CAS | 0 | 1 | 2 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | M1 | M2 | M3 | M4 | F1 | F2 | F3 | F4 | M1 | M2 | M3 | M4 | F1 | F2 | F3 | F4 | M1 | M2 | M3 | M4 | ||
Hexanal + | 66-25-1 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |
Citronellene ^ | 10281-56-8 | × | × | × | × | × | × | × | × | ||||||||||||||||
Benzaldehyde + | 100-52-7 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||
β-Pinene ^ | 127-91-3 | × | × | × | × | × | × | × | |||||||||||||||||
6-Methyl-5-hepten-2-one + | 110-93-0 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||||
β-Myrcene ^ | 123-35-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||
2,6-Dimethyl-2,6-octadiene + | 2792-39-4 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
Octanal + | 124-13-0 | × | × | × | × | × | × | × | |||||||||||||||||
3-Hexen-1-ol, acetate ^ | 3681-71-8 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||
o-Cymene ^ | 527-84-4 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||||
D-Limonene ^ | 5989-27-5 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||
α-Pinene ^ | 80-56-8 | × | × | × | × | × | × | × | × | ||||||||||||||||
γ-Terpinene ^ | 99-85-4 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||||
Cis-Linalool oxide ^ | 5989-33-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |
Nonanal + | 124-19-6 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||
β-Linalool ^ | 78-70-6 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||
Phenylethyl alcohol ^ | 60-12-8 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||
β-Terpineol ^ | 138-87-4 | × | × | × | × | × | |||||||||||||||||||
Trans-2-pinanol ^ | 4948-29-2 | × | × | × | × | × | × | × | |||||||||||||||||
Octanoic acid + | 124-07-2 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||||
Decanal + | 112-31-2 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||
β-Citral ^ | 106-26-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | x | ||||||||
Linalool acetate ^ | 115-95-7 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
α-Citral ^ | 141-27-5 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||
Nonanoic acid + | 112-05-0 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||
Hydroxycitronellal ^ | 107-75-5 | × | × | × | × | ||||||||||||||||||||
Isosafrole ^ | 120-58-1 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||||
Undecanal + | 112-44-7 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||
Methyl anthranilate ^ | 134-20-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||
Nerol acetate ^ | 141-12-8 | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||||||
n-Decanoic acid + | 334-48-5 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||
Cedrene ^ | 11028-42-5 | × | × | × | × | × | × | ||||||||||||||||||
β-Damascenone ^ | 23726-93-4 | × | × | × | × | × | × | × | × | × | × | × | |||||||||||||
Longifolene ^ | 475-20-7 | × | × | × | × | × | × | ||||||||||||||||||
α-Ionone ^ | 127-41-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||
Dihydro-β-ionone ^ | 17283-81-7 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||||
Geranyl acetone + | 689-67-8 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||
γ-Decalactone ^ | 706-14-9 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
α-Calacorene ^ | 21391-99-1 | × | × | × | × | × | × | × | × | × | × | ||||||||||||||
Tetradecanal + | 124-25-4 | × | × | × | × | ||||||||||||||||||||
Methyl dihydrojasmonate ^ | 24851-98-7 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
Tetradecanoic acid + | 544-63-8 | × | × | × | × | × | × | × | × | × | × | × | |||||||||||||
Isopropyl tetradecanoate ^ | 110-27-0 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
Pentadecanoic acid + | 1002-84-2 | × | × | × | × | × | × | ||||||||||||||||||
5-Cyclohexadecen-1-one ^ | 37069-25-9 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||
Galaxolide ^ | 1222-05-5 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
9-Hexadecenoic acid + | 2091-29-4 | × | × | × | × | × | × | ||||||||||||||||||
n-Hexadecanoic acid + | 57-10-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
Isopropyl palmitate + | 142-91-6 | × | × | × | × | × | × | × | × | ||||||||||||||||
2-Ethylhexyl 4-methoxycinnamate ^ | 5466-77-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |
Squalane *,+ | 111-01-3 | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffy, E.; Albero, G.; Morrin, A. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. Cosmetics 2018, 5, 62. https://doi.org/10.3390/cosmetics5040062
Duffy E, Albero G, Morrin A. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. Cosmetics. 2018; 5(4):62. https://doi.org/10.3390/cosmetics5040062
Chicago/Turabian StyleDuffy, Emer, Gwendoline Albero, and Aoife Morrin. 2018. "Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin" Cosmetics 5, no. 4: 62. https://doi.org/10.3390/cosmetics5040062
APA StyleDuffy, E., Albero, G., & Morrin, A. (2018). Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. Cosmetics, 5(4), 62. https://doi.org/10.3390/cosmetics5040062