The Development of a Skin Image Analysis Tool by Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Front-End GUI
2.2. Back-End MATLAB Files
2.3. Functionalities
3. Results and Discussions
3.1. Skin Image Classification
3.2. Skin Texture Analysis and Image Retrieval
3.3. Skin Live Image Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argenziano, G.; Soyer, H.P. Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma. Lancet Oncol. 2011, 2, 443–449. [Google Scholar] [CrossRef]
- Vestergaard, M.E.; Macaskill, P.; Holt, P.E.; Menzies, S.W. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: A meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 2008, 159, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Dermlite. Available online: https://dermlite.com/ (accessed on 18 March 2020).
- DermLite II Multi-Spectral. Available online: https://www.eufoton.com/en/products/accessories/dermlite-multispectral-ii (accessed on 18 March 2020).
- Nerasolutions. Available online: https://www.nerasolutions.co.uk/skin-analysis-devices (accessed on 18 March 2020).
- Visia Skin Analysis System. Available online: https://www.canfieldsci.com/imaging-systems/visia-complexion-analysis/ (accessed on 18 March 2020).
- EPISCAN I-200. Available online: https://www.longportinc.com/about-longport (accessed on 18 March 2020).
- Zhang, X.; Pan, W.; Bontozoglou, C.; Chirikhina, E.; Chen, D.; Xiao, P. Skin Capacitive Imaging Analysis Using Deep Learning GoogLeNet. In Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2020; Volume 1229. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, W.; Xiao, P. In-vivo Skin Capacitive Image Classification Using AlexNet Convolution Neural Network. In Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 439–443. [Google Scholar] [CrossRef]
- Ou, X.; Pan, W.; Zhang, X.; Xiao, P. Skin image retrieval using Gabor wavelet texture feature. Int. J. Cosmet. Sci. 2016, 38, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Pan, W.; Xiao, P. In-Vivo Skin Capacitive imaging Analysis by using Grey Level Co-occurrence Matrix (GLCM). Int. J. Pharm. 2014, 460, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontozoglou, C.; Zhang, X.; Xiao, P. Micro-relief analysis with skin capacitive imaging. Skin Res. Technol. 2019, 25, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, F.; Chirikhina, E.; Smeraldi, F.; Bontozoglou, C.; Xiao, P. Personal identification based on skin texture features from the forearm and multi-modal imaging. Skin Res. Technol. 2017, 23, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper With Convolutions. In Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015, arXiv:1409.1556v6. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- ISIC—The International Skin Imaging Collaboration (Skin Disease Database). Available online: https://isic-archive.com/#images (accessed on 20 March 2020).
- University of Montreal’s X-ray Images of COVID-19 Cases. Available online: https://github.com/ieee8023/covid-chestxray-dataset (accessed on 20 March 2020).
- Kaggle Chest X-Ray Images (Pneumonia). Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 20 March 2020).
- ProScope, H.R. The ProScope Mobile & HR USB Handheld Digital Microscope. Available online: https://www.bodelin.com/ (accessed on 20 July 2020).
- Skin Image Analysis Tool GitHub Site. Available online: https://github.com/PerryXiao2015/LSBU-Skin-Image-Analysis-Tool (accessed on 21 August 2020).
Files | Comments |
---|---|
PX_DL_GUI.mlapp | Main GUI file |
AlexnetTraining.m | AlexNet training function |
AlexnetClassify.m | AlexNet classification function |
GoogLeNetTraining.m | GoogLeNet training function |
GoogLeNetClassify.m | GoogLeNet classification function |
Gabor_Calculate.m | Gabor wavelet transform calculation function |
Gabor_Search.m | Gabor wavelet transform search function |
… … | … … |
Image Types | Table Column Head | ||
---|---|---|---|
Models | Training Time | Accuracy | |
Capacitive skin images | AlexNet | 1 min 6 s | 83.33% |
GoogLeNet | 1 min 39 s | 100.00% | |
VGG19 | 12 min 5 s | 58.33% | |
ResNet101 | 9 min 12 s | 87.50% | |
Skin cancer images | AlexNet | 8 min 37 s | 73.89% |
GoogLeNet | 13 min 23 s | 77.78% | |
VGG19 | 91 min 15 s | 75.00% | |
ResNet101 | 66 min 40 s | 77.78% | |
Skin ultrasound images | AlexNet | 4 min 56 s | 69.44% |
GoogLeNet | 10 min 51 s | 56.67% | |
VGG19 | 71 min 59 s | 60.56% | |
ResNet101 | 63 min 3 s | 70.56% | |
Chest X-ray images | AlexNet | 43 s | 92.86% |
GoogLeNet | 1 min 30 s | 92.85% | |
VGG19 | 6 min 44 s | 85.71% | |
ResNet101 | 4 min 42 s | 100.00% |
Image Types | Table Column Head | |||
---|---|---|---|---|
Algorithms | Calculation Time | Searching Time | Error Rate | |
Capacitive skin images | Gabor | 153 s | 1059 ms | 1/6 |
PCA | 1.6 s | 221 ms | 3/6 | |
GLCM | 1.1 s | 25 ms | 2/6 | |
Skin cancer images | Gabor | 370 s | 2834 ms | 0/6 |
PCA | 54 s | 1560 ms | 2/6 | |
GLCM | 482 s | 698 ms | 2/6 | |
Skin ultrasound images | Gabor | 324 s | 2743 ms | 2/6 |
PCA | 29 s | 2409 ms | 3/6 | |
GLCM | 118 s | 220 ms | 1/6 | |
Chest X-ray images | Gabor | 35 s | 813 ms | 0/6 |
PCA | 2.6 s | 162 ms | 2/6 | |
GLCM | 30 s | 563 ms | 0/6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Zhang, X.; Pan, W.; Ou, X.; Bontozoglou, C.; Chirikhina, E.; Chen, D. The Development of a Skin Image Analysis Tool by Using Machine Learning Algorithms. Cosmetics 2020, 7, 67. https://doi.org/10.3390/cosmetics7030067
Xiao P, Zhang X, Pan W, Ou X, Bontozoglou C, Chirikhina E, Chen D. The Development of a Skin Image Analysis Tool by Using Machine Learning Algorithms. Cosmetics. 2020; 7(3):67. https://doi.org/10.3390/cosmetics7030067
Chicago/Turabian StyleXiao, Perry, Xu Zhang, Wei Pan, Xiang Ou, Christos Bontozoglou, Elena Chirikhina, and Daqing Chen. 2020. "The Development of a Skin Image Analysis Tool by Using Machine Learning Algorithms" Cosmetics 7, no. 3: 67. https://doi.org/10.3390/cosmetics7030067
APA StyleXiao, P., Zhang, X., Pan, W., Ou, X., Bontozoglou, C., Chirikhina, E., & Chen, D. (2020). The Development of a Skin Image Analysis Tool by Using Machine Learning Algorithms. Cosmetics, 7(3), 67. https://doi.org/10.3390/cosmetics7030067