Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors
Abstract
:1. Introduction
2. Information Search Methodology
3. Phospholipid Composition of Lecithins
3.1. Vegetable Sources of Lecithins
3.2. Animal Sources of Lecithins
3.3. Marine Animal Sources of Lecithins
4. Uses and Applications of Lecithins
4.1. Nutritional Value
4.2. Lecithins as Emulsions Stabilizers
4.3. Lecithins to Develop Liposomes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Safety Assessment of Lecithin and Other Phosphoglycerides as Used in Cosmetics; Cosmetic Ingredient Review: Washington, DC, USA, 2015. [Google Scholar]
- Szuhaj, B.F. Lecithins: Sources, Manufacture & Uses; AOCS Monograph; American Oil Chemists’ Society: Champaign, IL, USA, 1989; ISBN 9780935315271. [Google Scholar]
- List, G.R. Soybean Lecithin: Food, Industrial Uses, and Other Applications. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–33. ISBN 9781630670450. [Google Scholar]
- Wilson, D.R. Lecithin: Benefits, Risks, and Types. Available online: https://www.medicalnewstoday.com/articles/319260#types-of-lecithin (accessed on 9 June 2020).
- USDA National Organic Program Technical Evaluation Report: Lecithin-Bleached. Available online: https://www.ams.usda.gov/sites/default/files/media/Lecithin%20bleached%20TR%202009.pdf (accessed on 11 June 2020).
- Andersen, F.A. Final Report on the Safety Assessment of Trichloroethane. Int. J. Toxicol. 2008, 27, 107–138. [Google Scholar] [CrossRef]
- Station, A.R. Impact of Dietary Phospholipids on Human Health. ALP Sci. 2008, 524, 1–15. [Google Scholar]
- Aktas, M.; Danne, L.; Möller, P.; Narberhaus, F. Membrane lipids in Agrobacterium tumefaciens: Biosynthetic pathways and importance for pathogenesis. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; W H Freeman: New York, NY, USA, 2002. [Google Scholar]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- van Hoogevest, P.; Fahr, A. Phospholipids in Cosmetic Carriers. In Nanocosmetics; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–140. [Google Scholar]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Tehrany, E.A.; Kahn, C.J.F.; Baravian, C.; Maherani, B.; Belhaj, N.; Wang, X.; Linder, M. Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: Application to cell culture. Colloids Surf. B Biointerfaces 2012, 95, 75–81. [Google Scholar] [CrossRef]
- Burling, H.; Graverholt, G. Milk—A new source for bioactive phospholipids for use in food formulations. Lipid Technol. 2008, 20, 229–231. [Google Scholar] [CrossRef]
- Dayton, C.L.G.; Galhardo, F. Enzymatic Degumming. In Green Vegetable Oil Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 107–145. ISBN 9780983057208. [Google Scholar]
- Guiotto, E.N.; Tomás, M.C.; Diehl, B.W.K. Sunflower Lecithin. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 57–75. ISBN 9781630670450. [Google Scholar]
- Gunstone, F. Vegetable sources of lipids. In Modifying Lipids for Use in Food; Elsevier: Amsterdam, The Netherlands, 2006; pp. 11–27. ISBN 9781855739710. [Google Scholar]
- Guo, M. Soy food products and their health benefits. In Functional Foods; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Hayes, D.G. Fatty Acids–Based Surfactants and Their Uses. In Fatty Acids; Elsevier: Amsterdam, The Netherlands, 2017; pp. 355–384. [Google Scholar]
- Jafari, F.; Agh, N.; Noori, F.; Tokmachi, A.; Gisbert, E. Effects of dietary soybean lecithin on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus ). Fish Shellfish Immunol. 2018, 80, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Jala, R.C.R.; Prasad, R.B.N. Rice Bran Lecithin: Compositional, Nutritional, and Functional Characteristics. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 35–55. ISBN 9781630670450. [Google Scholar]
- Joshi, A.; Paratkar, S.G.; Thorat, B.N. Modification of lecithin by physical, chemical and enzymatic methods. Eur. J. Lipid Sci. Technol. 2006, 108, 363–373. [Google Scholar] [CrossRef]
- Norn, V. Emulsifiers in Food Technology; Norn, V., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; ISBN 9781118921265. [Google Scholar]
- Pokorný, J. Production, separation and modification of phospholipids for use in food. In Modifying Lipids for Use in Food; Elsevier: Amsterdam, The Netherlands, 2006; pp. 369–390. ISBN 9781855739710. [Google Scholar]
- Robert, C.; Couëdelo, L.; Vaysse, C.; Michalski, M.-C. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 2020, 169, 121–132. [Google Scholar] [CrossRef]
- Rossi, M. Use of Lecithin and Lecithin Fractions. In Bioactive Egg Compounds; Springer: Berlin/Heidelberg, Germany, 2007; pp. 229–239. ISBN 9783540378839. [Google Scholar]
- Subra-Paternault, P.; ThongDeng, H.; Grélard, A.; Cansell, M. Extraction of phospholipids from scallop by-product using supercritical CO2/alcohol mixtures. LWT-Food Sci. Technol. 2015, 60, 990–998. [Google Scholar] [CrossRef]
- Sun, N.; Chen, J.; Wang, D.; Lin, S. Advance in food-derived phospholipids: Sources, molecular species and structure as well as their biological activities. Trends Food Sci. Technol. 2018, 80, 199–211. [Google Scholar] [CrossRef]
- Szuhaj, B.F.; Yeo, J.; Shahidi, F. Lecithins. In Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2020; pp. 1–86. [Google Scholar]
- van Nieuwenhuyzen, W. Lecithin and Other Phospholipids. In Surfactants from Renewable Resources; Jhon Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470760413. [Google Scholar]
- Wang, T. Soybean Oil. In Vegetable Oils in Food Technology; Wiley-Blackwell: Oxford, UK, 2011; pp. 59–105. ISBN 9781444332681. [Google Scholar]
- Wang, T. Soybean: Processing. In Encyclopedia of Food Grains: Second Edition; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780123947864. [Google Scholar]
- Wendel, A. Lecithin. In Van Nostrand’s Encyclopedia of Chemistry; Major Reference Works; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 9780471740032. [Google Scholar]
- Yang, B.; Zhou, R.; Yang, J.-G.; Wang, Y.-H.; Wang, W.-F. Insight into the Enzymatic Degumming Process of Soybean Oil. J. Am. Oil Chem. Soc. 2008, 85, 421–425. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Van de Walle, D.; Petit, C.; Beheydt, B.; Depypere, F.; Dewettinck, K. Mapping the Chemical Variability of Vegetable Lecithins. J. Am. Oil Chem. Soc. 2014, 91, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Ghazani, S.M.; Marangoni, A.G. Healthy Fats and Oils. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Julio, L.M.; Copado, C.N.; Diehl, B.W.K.; Ixtaina, V.Y.; Tomás, M.C. Chia bilayer emulsions with modified sunflower lecithins and chitosan as delivery systems of omega-3 fatty acids. LWT 2018, 89, 581–590. [Google Scholar] [CrossRef]
- Cabezas, D.M.; Diehl, B.W.K.; Tomás, M.C. Sunflower Lecithin: Application of a Fractionation Process with Absolute Ethanol. J. Am. Oil Chem. Soc. 2009, 86, 189–196. [Google Scholar] [CrossRef]
- Cabezas, D.M.; Madoery, R.; Diehl, B.W.K.; Tomás, M.C. Emulsifying Properties of Different Modified Sunflower Lecithins. J. Am. Oil Chem. Soc. 2012, 89, 355–361. [Google Scholar] [CrossRef]
- Ambrosewicz-Walacik, M.; Tańska, M.; Rotkiewicz, D. Phospholipids of Rapeseeds and Rapeseed Oils: Factors Determining Their Content and Technological Significance—A Review. Food Rev. Int. 2015, 31, 385–400. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Gutiérrez-Uribe, J.A.; García-Lara, S. Phytochemical Profiles and Nutraceutical Properties of Corn and Wheat Tortillas. In Tortillas; Elsevier: Amsterdam, The Netherlands, 2015; pp. 65–96. ISBN 9780128123683. [Google Scholar]
- Liu, H.; Liu, T.; Fan, H.; Gou, M.; Li, G.; Ren, H.; Wang, D.; Cheng, Z. Corn Lecithin for Injection from Deoiled Corn Germ: Extraction, Composition, and Emulsifying Properties. Eur. J. Lipid Sci. Technol. 2018, 120, 1700288. [Google Scholar] [CrossRef]
- Singanusong, R.; Garba, U. Micronutrients in rice bran oil. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128128282. [Google Scholar]
- Sun, X.; Zhang, L.; Tian, S.; Yang, K.; Xie, J. Phospholipid composition and emulsifying properties of rice bran lecithin from enzymatic degumming. LWT 2020, 117, 108588. [Google Scholar] [CrossRef]
- Manjula, S.; Subramanian, R. Laboratory Studies on Membrane Deoiling of Lecithin. J. Am. Oil Chem. Soc. 2008, 85, 573–580. [Google Scholar] [CrossRef]
- Hernandez, E. Cottonseed. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Cansell, M.; Bardeau, T.; Morvan, E.; Grélard, A.; Buré, C.; Subra-Paternault, P. Phospholipid Profiles of Oleaginous Pressed Cakes Using NMR and Gas Chromatography. J. Am. Oil Chem. Soc. 2017, 94, 1219–1223. [Google Scholar] [CrossRef]
- List, G.R. Processing and Food Uses of Peanut Oil and Protein. In Peanuts; Elsevier: Amsterdam, The Netherlands, 2016; pp. 405–428. ISBN 9781630670382. [Google Scholar]
- Bertazzo, A.; Comai, S.; Mangiarini, F.; Chen, S. Composition of Cacao Beans. In Chocolate in Health and Nutrition; Humana Press: Totowa, NJ, USA, 2013; pp. 105–117. ISBN 9781617798030. [Google Scholar]
- Arendt, E.K.; Zannini, E. Oats. In Cereal Grains for the Food and Beverage Industries; Elsevier: Amsterdam, The Netherlands, 2013; pp. 243–283. [Google Scholar]
- Lafiandra, D.; Masci, S.; Sissons, M.; Dornez, E.; Delcour, J.A.; Courtin, C.M.; Caboni, M.F. Kernel Components of Technological Value. In Durum Wheat; Elsevier: Amsterdam, The Netherlands, 2012; pp. 85–124. ISBN 9780128104323. [Google Scholar]
- Dunford, N.T. Wheat Germ Oil. In Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Kamal-Eldin, A.B.T.-G., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 359–376. ISBN 978-1-893997-97-4. [Google Scholar]
- Ramadan, M.F. Niger Seed Oil. In Gourmet and Health-Promoting Specialty Oils; Elsevier: Amsterdam, The Netherlands, 2009; pp. 283–298. ISBN 9780128043516. [Google Scholar]
- Züge, L.C.B.; Maieves, H.A.; Silveira, J.L.M.; da Silva, V.R.; de Paula Scheer, A. Use of avocado phospholipids as emulsifier. LWT-Food Sci. Technol. 2017, 79, 42–51. [Google Scholar] [CrossRef]
- Lim, T.K. Allium sativum. In Edible Medicinal and Non Medicinal Plants; Springer: Dordrecht, The Netherlands, 2015; pp. 210–360. [Google Scholar]
- Panpipat, W.; Chaijan, M. Palm Phospholipids. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–90. ISBN 9781630670450. [Google Scholar]
- Pande, G.; Akoh, C.C.; Lai, O.-M. Food Uses of Palm Oil and Its Components. In Palm Oil; Elsevier: Amsterdam, The Netherlands, 2012; pp. 561–586. ISBN 9780128043462. [Google Scholar]
- Venegas-Calerón, M.; Ruíz-Méndez, M.V.; Martínez-Force, E.; Garcés, R.; Salas, J.J. Characterization of Xanthoceras sorbifolium Bunge seeds: Lipids, proteins and saponins content. Ind. Crops Prod. 2017, 109, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Nasopoulou, C.; Gogaki, V.; Panagopoulou, E.; Demopoulos, C.; Zabetakis, I. Hen egg yolk lipid fractions with antiatherogenic properties. Anim. Sci. J. 2013, 84, 264–271. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef] [Green Version]
- van Nieuwenhuyzen, W. Production and Utilization of Natural Phospholipids. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 245–276. ISBN 9781630670450. [Google Scholar]
- Lesnierowski, G.; Stangierski, J. What’s new in chicken egg research and technology for human health promotion?—A review. Trends Food Sci. Technol. 2018, 71, 46–51. [Google Scholar] [CrossRef]
- Sunwoo, H.H.; Gujral, N. Chemical Composition of Eggs and Egg Products. In Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 331–363. ISBN 9783642366055. [Google Scholar]
- Walczak, J.; Bocian, S.; Trziszka, T.; Buszewski, B. Hyphenated Analytical Methods in Determination of Biologically Active Compounds in Hen’s Eggs. Crit. Rev. Anal. Chem. 2016, 46, 201–212. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Strati, I.F.; Miniadis-Meimaroglou, S. Lipid, fatty acid and carotenoid content of edible egg yolks from avian species: A comparative study. Food Chem. 2011, 124, 971–977. [Google Scholar] [CrossRef]
- Metin, S.; Hartel, R.W. Milk Fat and Cocoa Butter. In Cocoa Butter and Related Compounds; Elsevier: Amsterdam, The Netherlands, 2012; pp. 365–392. ISBN 9780128043448. [Google Scholar]
- Rombaut, R.; Dewettinck, K. Properties, analysis and purification of milk polar lipids. Int. Dairy J. 2006, 16, 1362–1373. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.T.; Phan, T.T.Q.; Van Camp, J.; Dewettinck, K. Milk and Dairy Polar Lipids: Occurrence, Purification, and Nutritional and Technological Properties. In Polar Lipids: Biology, Chemistry, and Technology; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9781630670450. [Google Scholar]
- Lecomte, M.; Bourlieu, C.; Michalski, M.-C. Nutritional Properties of Milk Lipids. In Dairy in Human Health and Disease Across the Lifespan; Elsevier: Amsterdam, The Netherlands, 2017; pp. 435–452. ISBN 9780128098691. [Google Scholar]
- Hageman, J.H.J.; Danielsen, M.; Nieuwenhuizen, A.G.; Feitsma, A.L.; Dalsgaard, T.K. Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int. Dairy J. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Schneider, M. Marine Phospholipids and Their Applications: Next-Generation Omega-3 Lipids. In Omega-6/3 Fatty Acids; Humana Press: Totowa, NJ, USA, 2013; pp. 297–308. ISBN 9781627032155. [Google Scholar]
- Uddin, M.S.; Kishimura, H.; Chun, B.-S. Isolation and Characterization of Lecithin from Squid (Todarodes pacificus) Viscera Deoiled by Supercritical Carbon Dioxide Extraction. J. Food Sci. 2011, 76, C350–C354. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Chun, B.-S. Quality characteristics of lecithin isolated from deoiled mackerel ( Scomber japonicus ) muscle using different methods. J. Ind. Eng. Chem. 2015, 21, 620–626. [Google Scholar] [CrossRef]
- Smirnov, N.N. Chemical Composition. In Physiology of the Cladocera; Smirnov, N.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 13–38. ISBN 978-0-12-805194-8. [Google Scholar]
- Snyder, H.E. Edible fats and oils processing: Basic principles and modern practices. Trends Food Sci. Technol. 1991, 2, 132. [Google Scholar] [CrossRef]
- Tran, Q.; Le, T.; Pham, M.; Do, T.; Vu, M.; Nguyen, D.; Bach, L.; Bui, L.; Pham, Q. Fatty Acid, Lipid Classes and Phospholipid Molecular Species Composition of the Marine Clam Meretrix lyrata (Sowerby 1851) from Cua Lo Beach, Nghe An Province, Vietnam. Molecules 2019, 24, 895. [Google Scholar] [CrossRef] [Green Version]
- Tafesse, F.G.; Ternes, P.; Holthuis, J.C.M. The Multigenic Sphingomyelin Synthase Family. J. Biol. Chem. 2006, 281, 29421–29425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furse, S. Is phosphatidylglycerol essential for terrestrial life? J. Chem. Biol. 2017, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Uphoff, A.; Hermansson, M.; Haimi, P.; Somerharju, P. Analysis of complex lipidomes. In Medical Applications of Mass Spectrometry; Vékey, K., Telekes, A., Vertes, A.B.T.-M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 223–249. ISBN 978-0-444-51980-1. [Google Scholar]
- Shurtleff, W.; Aoyagi, A. History of Lecithin and Phospholipids (1850–2016): Extensively Annotated Bibliography and Sourcebook, Including Phosphatides and Liposomes; Soyinfo Center: Lafayette, CA, USA, 2016; ISBN 9781928914860. [Google Scholar]
- Kondratowicz, A.; Weiss, M.; Juzwa, W.; Majchrzycki, Ł.; Lewandowicz, G. Characteristics of liposomes derived from egg yolk. Open Chem. 2019, 17, 763–778. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine Omega-3 Phospholipids: Metabolism and Biological Activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef] [Green Version]
- Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and cardiovascular disease: Are marine phospholipids the answer? Food Funct. 2020, 11, 2861–2885. [Google Scholar] [CrossRef] [PubMed]
- Murru, E.; Banni, S.; Carta, G. Nutritional Properties of Dietary Omega-3-Enriched Phospholipids. Biomed Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grompone, M.A. Sunflower and High-Oleic Sunflower Oils. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 1–54. [Google Scholar] [CrossRef]
- van Nieuwenhuyzen, W.; Tomás, M.C. Update on vegetable lecithin and phospholipid technologies. Eur. J. Lipid Sci. Technol. 2008, 110, 472–486. [Google Scholar] [CrossRef]
- Smith, R.E.; Rouchotas, P.; Fritz, H. Lecithin (Phosphatidylcholine): Healthy Dietary Supplement or Dangerous Toxin? Nat. Prod. J. 2016, 6. [Google Scholar] [CrossRef]
- Duric, M.; Sivanesan, S.; Bakovic, M. Phosphatidylcholine functional foods and nutraceuticals: A potential approach to prevent non-alcoholic fatty liver disease. Eur. J. Lipid Sci. Technol. 2012, 114, 389–398. [Google Scholar] [CrossRef]
- Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine Metabolism in Health and Disease. In International Review of Cell and Molecular Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 321, pp. 29–88. ISBN 9780128047071. [Google Scholar]
- van der Veen, J.N.; Lingrell, S.; da Silva, R.P.; Jacobs, R.L.; Vance, D.E. The Concentration of Phosphatidylethanolamine in Mitochondria Can Modulate ATP Production and Glucose Metabolism in Mice. Diabetes 2014, 63, 2620–2630. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Shirouchi, B.; Nagao, K.; Inoue, N.; Furuya, K.; Koga, S.; Matsumoto, H.; Yanagita, T. Dietary Phosphatidylinositol Prevents the Development of Nonalcoholic Fatty Liver Disease in Zucker (fa/fa ) Rats. J. Agric. Food Chem. 2008, 56, 2375–2379. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.R.; Sparks, D.L. Phospholipids as cardiovascular therapeutics. Curr. Opin. Investig. Drugs 2008, 9, 281–285. [Google Scholar]
- Hoffman, J.R.; Stout, J.R.; Williams, D.R.; Wells, A.J.; Fragala, M.S.; Mangine, G.T.; Gonzalez, A.M.; Emerson, N.S.; McCormack, W.P.; Scanlon, T.C.; et al. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Joy, J.M.; Gundermann, D.M.; Lowery, R.P.; Jäger, R.; McCleary, S.A.; Purpura, M.; Roberts, M.D.; Wilson, S.M.; Hornberger, T.A.; Wilson, J.M. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutr. Metab. 2014, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escalante, G.; Alencar, M.; Haddock, B.; Harvey, P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J. Int. Soc. Sports Nutr. 2016, 13, 24. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y. Phosphatidic Acid-Mediated Mitogenic Activation of mTOR Signaling. Science 2001, 294, 1942–1945. [Google Scholar] [CrossRef]
- Kim, H.Y.; Huang, B.X.; Spector, A.A. Phosphatidylserine in the brain: Metabolism and function. Prog. Lipid Res. 2014, 56, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Glade, M.J.; Smith, K. Phosphatidylserine and the human brain. Nutrition 2015, 31, 781–786. [Google Scholar] [CrossRef]
- Komori, T. The effects of phosphatidylserine and omega-3 fatty acid-containing supplement on late life depression. Ment. Illn. 2015, 7, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Hallman, M.; Enhorning, G.; Possmayer, F. Composition and surface activity of normal and phosphatidylglycerol-deficient lung surfactant. Pediatr. Res. 1985, 19, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Potočki, S. Potential health benefits of sphingolipids in milk and dairy products. Mljekarstvo 2016, 66, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Schneider, N.; Hauser, J.; Oliveira, M.; Cazaubon, E.; Mottaz, S.C.; O’Neill, B.V.; Steiner, P.; Deoni, S.C.L. Sphingomyelin in brain and cognitive development: Preliminary data. ENeuro 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, A. Safety and efficacy of lecithins (Lipidol) for all animal species. EFSA J. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 2014, 116, 1088–1107. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Liu, P.; Liu, G.; Lu, X. Recovered Camellia oleifera lecithin by acid and enzymatic oil-degumming: Chemical composition and emulsifying properties. Int. J. Food Sci. Technol. 2020, 55, 3008–3018. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftci, O.N. Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chem. 2018, 242, 139–146. [Google Scholar] [CrossRef]
- Belhaj, N.; Arab-Tehrany, E.; Linder, M. Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem. 2010, 45, 187–195. [Google Scholar] [CrossRef]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: Recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- Washington, C. Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev. 1996, 20, 131–145. [Google Scholar] [CrossRef]
- Nii, T.; Ishii, F. Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids Surf. B Biointerfaces 2004, 39, 57–63. [Google Scholar] [CrossRef]
- Davis, S.S. The stability of fat emulsions for intravenous administration. In Advances in Clinical Nutrition; Springer: Amsterdam, The Netherlands, 1983; pp. 213–239. [Google Scholar]
- Hippalgaonkar, K.; Majumdar, S.; Kansara, V. Injectable Lipid Emulsions—Advancements, Opportunities and Challenges. AAPS PharmSciTech 2010, 11, 1526–1540. [Google Scholar] [CrossRef] [Green Version]
- Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 381–391. [Google Scholar] [CrossRef]
- Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 2014, 11, 20140459. [Google Scholar] [CrossRef] [Green Version]
- Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef]
- Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery. In Application of Nanotechnology in Drug Delivery; InTech: London, UK, 2014. [Google Scholar]
- Pichot, R.; Watson, R.; Noron, I. Phospholipids at the Interface: Current Trends and Challenges. Int. J. Mol. Sci. 2013, 14, 11767–11794. [Google Scholar] [CrossRef] [Green Version]
Origin of Lecithin Sources/References | Lecithin Content | Phospholipid Composition of Lecithins (%) | |||||
---|---|---|---|---|---|---|---|
PC | PE | PI | PA | PS | PG | ||
Vegetable Sources | 0.7–1.9 | 3.2–74.9 | 3.0–64.9 | 1.1–41.0 | 0.2–43.0 | 0.2–26.0 | 0.9–9.0 |
Soybean/[3,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] | 60.0–81.9 | 10.0–55.3 | 6.5–34.0 | 1.7–41.0 | 0.2–12.0 | 0.2–6.0 | 1.0–2.0 |
Soybean */[10,36] | 10.0–55.0 | 9.0–26.0 | 8.0–18.0 | -- | -- | 1.0–2.0 | |
Sunflower/[16,17,21,23,24,25,28,30,33,35,37,38,39] | 38.9–43.1 | 14.0–64.0 | 4.8–24.0 | 11.0–35.7 | 1.3–13.0 | 1.0–4.0 | 0.9–1.0 |
Sunflower */[29] | 12.7–64.2 | 9.9–46.6 | 3.7–36.0 | -- | -- | -- | |
Rapeseed/[3,13,16,21,23,24,25,28,30,33,35,40] | 71.3–71.3 | 16.7–74.1 | 6.5–64.9 | 5.3–33.0 | 2.4–28.0 | 1.0–4.0 | |
Rapeseed */[29] | 16.2–24.6 | 12.0–22.1 | 7.6–18.0 | -- | -- | -- | |
Corn/[21,23,29,33,41,42] | 57.5–68.1 | 30.0–68.1 | 3.0–13.9 | 14.5–19.8 | 9.0–9.4 | 1.0 | 1.0–1.4 |
Rice bran/[21,43,44,45] | 33.0–33.6 | 3.2–38.0 | 11.8–33.2 | 5.8–19.7 | 2.5–22.6 | 8.6–8.6 | |
Rice bran */[29] | 20.4–23.1 | 17.8–20.2 | 5.8–6.6 | ||||
Cottonseed/[29] | 23.2–35.9 | 13.5–20.1 | 13.4–13.4 | 8.8 | 2.4–26.0 | 7.6 | |
Cottonseed */[46] | 33.0 | 22.0 | 37.0 | ||||
Barley */[29] | 44.3–44.4 | 7.6–8.8 | 1.1–1.3 | ||||
Flaxseed/[47] | 4.8–7.8 | 31.0–37.0 | 12.0–16.0 | 24.0–31.0 | 16.0–23.0 | ||
Jangli badam seed */[29] | 30.0 | 23.0 | 40.6 | ||||
Palash seed */[29] | 44.6 | 14.8 | 27.0 | ||||
Papaya seed */[29] | 28.1 | 18.7 | 34.0 | ||||
Peanut/[33,48] | 23.0–39.4 | 8.0–18.8 | 17.0–22.2 | 2.0–6.6 | |||
Peanut */[29] | 49.0 | 16.0 | 22.0 | ||||
Sesame/[47] | 0.7–3.0 | 39.0 | 10.0–19.0 | 13.0–14.0 | 27.0–30.0 | ||
Cacao Beans [49] | 36.0–40.0 | 11.0–19.0 | 26.0–29.0 | 7.0–10.0 | 2.3–3.3 | ||
Carrot seed */[29] | 29.1 | 35.4 | 23.1 | ||||
Coriander seed */[29] | 44.0 | 29.3 | 23.1 | ||||
Oats/[50] | 5.0–26.0 | 45.0–50.0 | 9.0 | 10.0 | 18.0 | ||
Durum Wheat */[51] | 6.1–14.1 | 26.4 | 25.5 | 27.3 | 4.5 | ||
Wheat germ/[52] | 40.0–60.0 | 9.0–15.0 | 13.0–20.0 | ||||
Walnut/[47] | 8.1–10.8 | 23.0 | 13.0–16.0 | 24.0–26.0 | 34.0–38.0 | ||
Niger Seed Oil/[53] | 48.7 | 22.5 | 14.6 | 8.7 | |||
Avocado fruit */[29,54] | 20.0–44.9 | 12.0–55.0 | 12.1–18.0 | ||||
Olive fruit */[29] | 47.3–58.9 | 5.3–8.0 | 18.0–23.9 | ||||
Garlic/[55] | 23.4 | 23.5 | 17.9 | ||||
Palm/[56] | 10.0 | 36.0 | 24.0 | 22.0 | 3.0 | 9.0 | |
Palm */[57] | 34.0–35.0 | 22.0–26.0 | 21.0–25.0 | ||||
Cucurbirt */[29] | 55.8–74.9 | 10.5–18.7 | 13.7–17.2 | ||||
Camelina/[47] | 6.3–10.4 | 17.0–21.0 | 12.0–16.0 | 13.0–25.0 | 42.0–43.0 | ||
Hemp/[47] | 3.9–6.5 | 44.0–45.0 | 15.0–17.0 | 21.0–25.0 | 9.0–12.0 | ||
Xanthoceras sorbifolium/[58] | 9.7–19.1 | 5.6–7.0 | 13.9–29.1 | 24.2–34.1 | 3.3–7.3 |
Origin of Lecithin Sources/References | Lecithin Content | Phospholipid Composition of Lecithins (%) | |||||
---|---|---|---|---|---|---|---|
PC | PE | PI | PA | PS | SM | ||
Animal Sources | 8.0–50.0 | 8.0–82.0 | 1.9–72.3 | 0.0–14.1 | 0.9–2.0 | 1.0–18.0 | 1.0–35.3 |
Egg yolk/[14,23,24,26,27,29,33,36,59,60,61,62,63] | 8.0–50.0 | 60.0–82.0 | 8.0–26.0 | 0.0–3.0 | 1.0 | 1.0–3.0 | 1.0–6.0 |
Egg yolk */[10,28,64] | 65.0–70.0 | 9.0–13.0 | |||||
Duck egg yolk/[65] | 20.4–21.0 | 4.3–4.8 | 0.5 | ||||
Goose egg yolk/[65] | 22.5–23.1 | 3.2–3.5 | 0.4–0.5 | ||||
Quail egg yolk/[65] | 33–33.5 | 3.7–3.9 | 0.3 | ||||
Turkey egg yolk/[65] | 28.9–30.0 | 3.6–4.1 | 0.3–0.4 | ||||
Ostrich egg yolk/[65] | 30.7–31.9 | 1.9–2.3 | 0.6 | ||||
Milk/[14,23,27,66,67] | 9.4–40.0 | 19.2–37.3 | 19.8–42.0 | 0.6–11.8 | 2.0 | 1.9–12.0 | 25.2–29.0 |
Milk */[10] | 26.0 | 30.0 | 9.0 | ||||
Milk fat/[68] | 8.0–45.5 | 26.4–72.3 | 1.4–14.1 | 2.0–16.1 | 4.1–29.2 | ||
Cow’s milk/[24] | 20.0–30.0 | 28.0–35.0 | 1.0–8.0 | ||||
Cow’s milk */[60,69,70] | 19.1–40.0 | 19.8–42.0 | 0.6–12.0 | 1.9–11.2 | 18.0–35.3 | ||
Ewes’ milk */[60] | 26.0–28.0 | 26.0–40.0 | 4.0–7.0 | 4.0–11.0 | 22.0–30.0 | ||
Goat milk */[60] | 27.0–32.0 | 20.0–42.0 | 4.0–10.0 | 3.0–14.0 | 16.0–30.0 | ||
Bovine milk fat/[71] | 27.5–32.9 | 6.3–8.3 | 26.3–28.5 | ||||
Bovine brain/[24,33] | 18.0–43.0 | 18.0–36.0 | 1.0–7.0 | 1.0–2.0 | 9.0–18.0 | 15.0 | |
Bovine brain */[29] | 18.4–48.2 | 23.5–36.1 | 1.8–7.1 | 0.9–1.7 | 6.7–18.0 |
Origin of Lecithin Sources | Lecithin Content | Phospholipid Composition of Lecithins (%) | |||||
---|---|---|---|---|---|---|---|
PC | PE | PI | PA | PS | SM | ||
Marine Animal Sources | 8.9–91.6 | 4.1–81.2 | 2.0–67.4 | 0.7–7.0 | 2.0 | 1.0–7.0 | 0.2–3.0 |
Salmon/[13,70] | 61.1 | 33.0 | |||||
Salmon */[60] | 50.0–62.0 | 10.0–40.0 | 5.0–7.0 | 1.0–7.0 | 0.2–1.0 | ||
Salmon egg */[60,72] | 35.0 | 29.0–80.0 | 2.0–13.0 | 1.0–4.0 | 3.0 | ||
Squid muscle/[73] | 71.7 | 24.7 | |||||
Squid viscera/[73] | 91.6 | 79.2–81.2 | 12.7–13.4 | ||||
Krill/[28] | 80.4 | 14.9 | 0.7 | ||||
Krill */[72] | 40.0 | 35.0 | 2.0 | 1.0 | |||
Anchovy/[23] | 65.0 | 68.0 | 29.0 | 1.0 | 2.0 | ||
Fish meal */[72] | 40.0 | 22.0 | 6.0 | 2.0 | |||
Mackerel/[74] | 8.9–12.2 | 20.1 | 67.4 | ||||
Water flea/[75] | 4.1–14.4 | 3.2–9.2 |
Origin of Lecithin Sources | Reported Applications | ||
---|---|---|---|
Nutritional Value | Emulsion Stabilizer | Lipid Component of Liposomes | |
Vegetal Sources | |||
Soybean | [3,10,28,31,32,33,61,87,105] | [3,26,31,32,35,61,87,105,106] | [13] |
Sunflower | [28,29,86,87] | [29,35,37,39,61,86,87] | |
Rapeseed | [87] | [29,35,61] | [13] |
Rice Bran | [21,44] | [21,44] | |
Camellia | [107] | [107,108] | |
Corn | [29,42] | [42] | |
Palm | [56,57] | [57] | |
Avocado | [54] | ||
Cotton Seed | [106] | ||
Niger seed | [53] | ||
Wheat Germ | [52] | ||
Animal Sources | |||
Egg yolk | [14,23,26,29,31,59,60,61,62,63,65,73,106] | [26,62,63,106] | [60] |
Milk | [14,29,31,67,68,69,70,87] | [60,67,68,69,70] | [68] |
Bovine brain | [29] | ||
Marine Animal Sources | |||
Salmon | [109] | [13] | |
Fish roe | [61] | ||
Krill | [61] | ||
Squid | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhajj, M.J.; Montero, N.; Yarce, C.J.; Salamanca, C.H. Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. Cosmetics 2020, 7, 87. https://doi.org/10.3390/cosmetics7040087
Alhajj MJ, Montero N, Yarce CJ, Salamanca CH. Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. Cosmetics. 2020; 7(4):87. https://doi.org/10.3390/cosmetics7040087
Chicago/Turabian StyleAlhajj, Maria J., Nicolle Montero, Cristhian J. Yarce, and Constain H. Salamanca. 2020. "Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors" Cosmetics 7, no. 4: 87. https://doi.org/10.3390/cosmetics7040087
APA StyleAlhajj, M. J., Montero, N., Yarce, C. J., & Salamanca, C. H. (2020). Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. Cosmetics, 7(4), 87. https://doi.org/10.3390/cosmetics7040087