Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Films
2.2. Studies of Film Structure
2.3. Studies of Swelling
2.4. Studies of Mechanical Properties
2.5. Analysis of Biocompatibility of Materials
3. Results
3.1. Dynamic Mechanical Analysis
3.2. IR Spectroscopy
3.3. X-Ray Structural Analysis
3.4. Scanning Electron Microscopy (SEM)
3.5. AFM Studies
3.6. Swelling of Films
3.7. Mechanical Properties
3.8. Studies of Biocompatibility
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.; Heo, D.N.; Lee, S.J.; Heo, M.; Kim, J.; Choi, S.; Park, H.-K.; Park, Y.G.; Lim, H.-N.; Kwon, I.K. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl. Surf. Sci. 2018, 432, 300. [Google Scholar] [CrossRef]
- Amani, H.; Mostafavi, E.; Arzaghi, H.; Davaran, S.; Akbarzadeh, A.; Akhavan, O.; Pazoki-Toroudi, H.; Webster, T.J. Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Eng. 2019, 5, 193. [Google Scholar] [CrossRef]
- Majeti, N.V.; Kumar, R. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Rao, G.; Bharathi, P.; Akila, R.M. A comprehensive review on biopolymers. Sci. Revs. Chem. Commun. 2014, 4, 61–68. [Google Scholar]
- Dobrovolskaya, I.P.; Yudin, V.E.; Popryadukhin, P.V.; Ivan’kova, E.M. Polymer Scaffolds for Tissue Engineering; Mediapapir: Saint-Petersburg, Russia, 2018. [Google Scholar]
- Sokolova, M.P.; Smirnov, M.A.; Samarov, A.A.; Bobrova, N.V.; Vorobiov, V.K.; Popova, E.N.; Filippova, E.; Geydt, P.; Lahderanta, E.; Toikka, A.M. Plasticizing of chitosan films with deep eutectic mixture of malonic acid and choline chloride. Carbohydr. Polym. 2018, 197, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, A.; Sabu, T.; Laly, A.P. Biopolymer Nanocomposites: Processing, Properties, and Applications; Wiley: San Francisco, CA, USA, 2013. [Google Scholar]
- Prateepchanachaia, S.; Thakhiewb, W.; Devahastinc, S.; Soponronnarit, S. Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydr. Polym. 2017, 174, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Dan, C.; Zeng, W.H.; Lin, H.; Dan, N.H. Miscibility studies on the blends of collagen/chitosan by dilute solution viscometry. Eur. Polym. J. 2007, 43, 2066. [Google Scholar] [CrossRef]
- Mathew, S.; Brahmakumar, M.; Abraham, E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers 2006, 82, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, N.; Kolbe, K.; Dresvyanina, E.; Grebennikov, S.; Dobrovolskaya, I.; Yudin, V.; Luxbacher, T.; Morganti, P. Effect of Chitin Nanofibrils on Biocompatibility and Bioactivity of the Chitosan-Based Composite Film Matrix Intended for Tissue Engineering. Materials 2019, 12, 1874. [Google Scholar] [CrossRef] [Green Version]
- Di Martinoa, A.; Sittingerc, M.; Risbud, M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983. [Google Scholar] [CrossRef]
- Pogorielov, M.V.; Sikora, V.Z. Chitosan as a hemostatic agent: Current state. Eur. J. Med. Ser. B 2015, 2, 24. [Google Scholar] [CrossRef]
- Kumar Thakur, V.; Kumar Thakur, M. Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review. ACS Sustain. Chem. Eng. 2014, 2, 2637. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Bourbon, A.I.; Quintas, M.A.C.; Coimbra, M.A.; Vicente, A.A. K-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov. Food Sci. Emerg. Technol. 2012, 16, 227. [Google Scholar] [CrossRef] [Green Version]
- Musilová, L.; Mráček, A.; Kovalcik, A.; Smolka, P.; Minařík, A.; Humpolíček, P.; Vícha, R.; Ponížil, P. Hyaluronan hydrogels modified by glycinated Kraft lignin: Morphology, swelling, viscoelastic properties and biocompatibility. Carbohydr. Polym. 2018, 181, 394. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Flores, R.; Giménez, B.; Fernández-Martín, F.; López-Caballero, M.E.; Montero, M.P.; Gómez-Guillén, M.C. Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocoll. 2013, 30, 163. [Google Scholar] [CrossRef] [Green Version]
- Spiridon, I.; Tanase, C.E. Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. Int. J. Biol. Macromol. 2018, 114, 855. [Google Scholar] [CrossRef]
- Pettersen, R.C. The chemical composition of wood. Chem. Solid Wood 1984, 207, 57. [Google Scholar]
- Dallmeyer, I.; Chowdhury, S.; Kadla, J.F. Preparation and Characterization of Kraft Lignin-Based Moisture-Responsive Films with Reversible Shape-Change Capability. Biomacromolecules 2013, 14, 7. [Google Scholar] [CrossRef]
- Crouvisier-Uriona, K.; Lagorce-Tachona, A.; Lauquina, C.; Wincklera, P.; Tongdeesoontornb, W.; Domenekc, S.; Debeauforta, F.; Karbowiaka, T. Impact of the homogenization process on the structure and antioxidant properties of chitosan-lignin composite films. Food Chem. 2017, 236, 120. [Google Scholar] [CrossRef]
- Chen, L.; Tang, C.; Ning, N.; Wang, C.; Fu, Q.; Znang, Q. Preparation and properties of chitosan/lignin composite films. Chin. J. Polym. Sci. 2009, 27, 739. [Google Scholar] [CrossRef]
- Nair, V.; Panigrahy, R.; Vinu, R. Development of Novel Chitosan-Lignin Composites for Adsorption of Dyes and Metal Ions from Wastewater. Chem. Eng. J. 2014, 254, 491. [Google Scholar] [CrossRef]
- Sudheer, R.; Dutta, P.K.; Mehrotra, G.K. Lignin Incorporated Antimicrobial Chitosan Film for Food Packaging Application. J. Polym. Mater. 2017, 34, 171. [Google Scholar]
- Volkova, N.; Ibrahima, V.; Hatti-Kaul, R.; Wadsö, L. Water sorption isotherms of Kraft lignin and its composites. Carbohydr. Polym. 2012, 87, 1817. [Google Scholar] [CrossRef]
- Naseem, A.; Muhammad, N.; Muhammad, Z.; Muhammad, K.; Ejaz, A.W. Effect of consortium of plant growth promoting and compost inhabiting bacteria on physicochemical changes and defense response of maize in fungus infested soil. Pak. J. Agric. Sci. 2016, 53, 59. [Google Scholar] [CrossRef]
- Krutov, S.; Evtuguin, D.; Ipatova, E.; Santos, S.; Sazanov, Y. Modification of acid hydrolysis lignin for value-added applications by micronization followed by hydrothermal alkaline treatment. Holzforschung 2015, 69, 761–768. [Google Scholar] [CrossRef]
- Kosyakova, D.; Ipatova, E.; Krutov, S.; Ul’yanovskii, N.; Pikovskoi, I. Study of Products of the Alkaline Decomposition of Hydrolysis Lignin by Atmospheric Pressure Photoionization High-Resolution Mass Spectrometry. Anal. Chem. 2017, 72, 1396–1403. [Google Scholar] [CrossRef]
- Lawrence, E. Nielsen, L.E. Mechanical Properties of Polymers and Composites; CRC Press: Boca Raton, FL, USA, 1974. [Google Scholar]
- Dresvyanina, E.N.; Dobrovol’skaya, I.P.; Yudin, V.E.; Smirnov, V.E.; Popova, E.N.; Vlasova, E.N. Thermal properties of salt and base forms of chitosan. Polym. Sci. Ser. A 2018, 60, 179–183. [Google Scholar] [CrossRef]
- Smirnova, V.E.; Dresvyanina, E.N.; Popova, E.N.; Saprykina, N.N.; Yudin, V.E.; Kolbe, K.A. Thermomechanical analysis of composite films based on chitosan and chitin nanofibrils. Russ. J. Appl. Chem. 2019, 92, 1506. [Google Scholar] [CrossRef]
- Narimane, M.-B.; De Hélène, B.; Christophe, V.; Fabrice, A. Physico-chemical, thermal, and mechanical approaches for the characterization of solubilized and solid state chitosans. J. Appl. Polym. Sci. 2014, 131, 46. [Google Scholar]
- Zhao, J.; Han, W.; Chen, H.; Tu, M.; Zeng, R.; Shi, Y.; Cha, Z.; Zhou, C. Preparation, structure and crystallinity of chitosan nano-fibers by a solid–liquid phase separation technique. Carbohydr. Polym. 2011, 83, 1541. [Google Scholar] [CrossRef]
- Vural, D.; Smithac, J.C.; Petridis, L. Dynamics of the lignin glass transition. Phys. Chem. Chem. Phys. 2018, 20, 20504–20512. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Mona, L.W.A.; Desbrieres, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydr. Polym. 2004, 58, 409. [Google Scholar] [CrossRef]
- Ageev, E.P.; Matushkina, N.N.; Gerasimov, V.I.; Zezin, S.B.; Vikhoreva, G.A.; Zotkin, M.A.; Obolonkova, E.S. Structure and transport behavior of heat-treated chitosan films. Polym. Sci. Ser. A 2004, 46, 1245. [Google Scholar]
- Ogawa, K.; Yui, T.; Miya, M. Dependence on the Preparation Procedure of the Polymorphism and Crystallinity of Chitosan Membranes. Biosci. Biotechnol. Biochem. 1992, 56, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Yui, T. Crystallinity of Partially N-Acetylated Chitosans. Biosci. Biotechnol. Biochem. 1993, 57, 1466–1469. [Google Scholar] [CrossRef]
- Takara, E.A.; Marchese, J.; Ochoa, N. NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydr. Polym. 2015, 132, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Mochalova, A.E.; Nikishchenkova, L.V.; Smirnova, N.N.; Smirnova, L.A. Thermodynamic properties of chitosan-based hydrogels in the range 0–350 K. Polym. Sci. Ser. B 2007, 49, 42–46. [Google Scholar] [CrossRef]
- Mognonov, D.M.; Ayurova, O.Z.; Stelmakh, S.A.; Ochirov, O.S.; Tkacheva, N.I.; Morozov, S.V. Thermodynamic compatibility of polymer blends. Appl. Solid State Chem. 2018, 4, 126–143. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczynski, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarger-Andre, S.; Domard, A. Chitosan carboxylic acid salts in solution and in the solid state. Carbohydr. Polym. 1994, 23, 211–219. [Google Scholar] [CrossRef]
- Kawada, J.; Yui, T.; Okuyama, K.; Ogawa, K. Crystalline Behavior of Chitosan Organic Acid Salts. Biosci. Biotechnol. Biochem. 2001, 65, 2542–2547. [Google Scholar] [CrossRef] [PubMed]
- Baklagina, Y.G.; Klechkovskaya, V.V.; Kononova, S.V.; Petrova, V.A.; Poshina, D.N.; Orekhov, A.S.; Skorik, Y.A. Polymorphic Modifications of Chitosan. Crystallogr. Rep. 2018, 63, 303–313. [Google Scholar] [CrossRef]
- Smirnov, M.; Nikolaeva, А.; Vorobiov, V.; Bobrova, N.V.; Abalov, I.; Smirnov, A.; Sokolova, M. Ionic Conductivity and Structure of Chitosan Films Modified with Lactic Acid-Choline Chloride NADES. Polymers 2020, 12, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amani, H.; Arzaghi, H.; Bayandori, M.; Shiralizadeh Dezfuli, A.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6, 1900572. [Google Scholar] [CrossRef] [Green Version]
- Rex, C.-C.; Wang, C.; Hsieh, M.-C.; Leea, T.-M. Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6Al4V. Biointerphases 2011, 6, 87–97. [Google Scholar] [CrossRef] [Green Version]
Composition | Strength, MPa | Modulus, GPa | Breaking Elongation, % |
---|---|---|---|
chitosan | 75.21 ± 18.3 | 3.11 ± 0.4 | 21.45 ± 11.4 |
chitosan + 10% lignin | 53.41 ± 4.5 | 2.75 ± 0.2 | 9.4 ± 2.2 |
chitosan + 20% lignin | 54.26 ± 3.8 | 2.79 ± 0.3 | 9.36 ± 2.4 |
chitosan + 30% lignin | 54.5 ± 5.5 | 2.84 ± 0.3 | 8.83 ± 3.3 |
Sample | Chitosan | Chitosan + 10% Lignin | Chitosan + 20% Lignin | Chitosan + 30% Lignin | ||||
---|---|---|---|---|---|---|---|---|
State | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet |
Strength, MPa | 62 ± 5 | 27 ± 3 | 36 ± 3 | 25 ± 2 | 33 ± 4 | 25 ± 2 | 28 ± 1 | 22 ± 3 |
Breaking elongation, % | 45 ± 10 | 101 ± 2 | 27 ± 5 | 157 ± 7 | 35 ± 5 | 159 ± 5 | 30 ± 7 | 155 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosova, E.; Smirnova, N.; Dresvyanina, E.; Smirnova, V.; Vlasova, E.; Ivan’kova, E.; Sokolova, M.; Maslennikova, T.; Malafeev, K.; Kolbe, K.; et al. Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization. Cosmetics 2021, 8, 24. https://doi.org/10.3390/cosmetics8010024
Rosova E, Smirnova N, Dresvyanina E, Smirnova V, Vlasova E, Ivan’kova E, Sokolova M, Maslennikova T, Malafeev K, Kolbe K, et al. Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization. Cosmetics. 2021; 8(1):24. https://doi.org/10.3390/cosmetics8010024
Chicago/Turabian StyleRosova, Elena, Natalia Smirnova, Elena Dresvyanina, Valentina Smirnova, Elena Vlasova, Elena Ivan’kova, Maria Sokolova, Tatiana Maslennikova, Konstantin Malafeev, Konstantin Kolbe, and et al. 2021. "Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization" Cosmetics 8, no. 1: 24. https://doi.org/10.3390/cosmetics8010024
APA StyleRosova, E., Smirnova, N., Dresvyanina, E., Smirnova, V., Vlasova, E., Ivan’kova, E., Sokolova, M., Maslennikova, T., Malafeev, K., Kolbe, K., Kanerva, M., & Yudin, V. (2021). Biocomposite Materials Based on Chitosan and Lignin: Preparation and Characterization. Cosmetics, 8(1), 24. https://doi.org/10.3390/cosmetics8010024