Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products
Abstract
:1. Introduction
2. Hair Formulations and Their Impact on Living Systems
3. Physicochemical Characteristics of NPs and Their Safety Testing
3.1. Exposure Assessment
3.2. Safety Testing
4. Safety Assessment Testing to Evaluate Different Types of Toxicity
4.1. General Requirements for the Assessment of Toxicological Data
4.1.1. Sensitization, Irritation, and Corrosivity of Skin and Eyes
4.1.2. Dermal/Percutaneous Absorption
4.1.3. Carcinogenicity
4.1.4. Reproductive Toxicology
4.1.5. Photo-Induced Toxicology
4.1.6. Mutagenicity Assessment
4.1.7. Genotoxicity of Hair Dyes Molecules
4.1.8. Cytotoxicity
4.1.9. Human Data
5. Legislation and Safety of the NMs Cosmetic Products
6. Outstanding Concerns
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiss, B.; Schaefer, U.F.; Lehr, C.M.; Wepf, R.; et al. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 2007, 66, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 2018, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Munoz, R.; Borrego, B.; Juarez-Moreno, K.; Garcia-Garcia, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett. 2017, 276, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, T.; Huang, F.; Wang, Z. The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis. Toxicol. Ind. Health 2018, 34, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Andreo-Filho, N.; Bim, A.V.K.; Kaneko, T.M.; Kitice, N.A.; Haridass, I.N.; Abd, E.; Santos Lopes, P.; Thakur, S.S.; Parekh, H.S.; Roberts, M.S.; et al. Development and Evaluation of Lipid Nanoparticles Containing Natural Botanical Oil for Sun Protection: Characterization and in vitro and in vivo Human Skin Permeation and Toxicity. Ski. Pharmacol. Physiol. 2018, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schipper, O. Nanoparticle agglomeration restricts uptake into living cells. Environ. Sci. Technol. 2005, 39, 473A. [Google Scholar]
- Nystrom, A.M.; Fadeel, B. Safety assessment of nanomaterials: Implications for nanomedicine. J. Control. Release 2012, 161, 403–408. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety. Guidance on the Safety Assessment of Nanomaterials in Cosmetics; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Yoshida, T.; Yoshioka, Y.; Tsutsumi, Y. Safety assessment of nanomaterials for development of nano-cosmetics. Yakugaku Zasshi n 2012, 132, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Scientific Committee on Consumer Safety. Notes of Guidance for Testing of Cosmetic Ingredients and Their Safety Evaluation by the SCCS. Available online: http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf (accessed on 21 March 2018).
- Saitta, P.; Cook, C.E.; Messina, J.L.; Brancaccio, R.; Wu, B.C.; Grekin, S.K.; Holland, J. Is There a True Concern Regarding the Use of Hair Dye and Malignancy Development? A Review of the Epidemiological Evidence Relating Personal Hair Dye Use to the Risk of Malignancy. Clin. Aesthet. Dermatol. 2013, 6, 8. [Google Scholar]
- Meyer, A.; Fischer, K. Oxidative transformation processes and products of para-phenylenediamine (PPD) and para-toluenediamine (PTD)—A review. Environ. Sci. Eur. 2015, 27, 11. [Google Scholar] [CrossRef] [Green Version]
- Zanoni, T.B.; Pedrosa, T.N.; Catarino, C.M.; Spiekstra, S.W.; de Oliveira, D.P.; Den Hartog, G.; Bast, A.; Hagemann, G.; Gibbs, S.; de Moraes Barros, S.B.; et al. Allergens of permanent hair dyes induces epidermal damage, skin barrier loss and IL-1 alpha increase in epidermal in vitro model. Food Chem. Toxicol. 2018, 112, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.T.; Goncalo, M.; Paiva, A.; Morgado, J.M.; Figueiredo, A.; Duarte, C.B.; Lopes, M.C. Contact sensitizers downregulate the expression of the chemokine receptors CCR6 and CXCR4 in a skin dendritic cell line. Arch. Dermatol. Res. 2005, 297, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food & Drug Administration. Hair Dyes. Available online: https://www.fda.gov/Cosmetics/ProductsIngredients/Products/ucm143066.htm (accessed on 20 March 2018).
- Bünger, H. Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- U.S. Department of Health and Human Services; FDA; Center for Food Safety and Applied Nutrition. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; U.S. Food & Drug Administration: Silver Spring, MD, USA, 2014.
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Poland, C.A.; Duffin, R.; Donaldson, K. High Aspect Ratio Nanoparticles and the Fibre Pathogenicity Paradigm. In Nanotoxicity: From In Vivo and In Vitro Models to Health Risks; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 61–79. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety SCCS. Checklists for Applicants Submitting Dossiers on Cosmetic Ingredients to be Evaluated by the SCCS; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Li, Y.; Doak, S.H.; Yan, J.; Chen, D.H.; Zhou, M.; Mittelstaedt, R.A.; Chen, Y.; Li, C.; Chen, T. Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 2017, 32, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Scherzad, A.; Meyer, T.; Kleinsasser, N.; Hackenberg, S. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs. Materials 2017, 10, 1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, V.A.; Kumar, A.; Gupta, G.S.; Pandey, A.K.; Dhawan, A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem. Toxicol. 2015, 85, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Sliwinska, A.; Kwiatkowski, D.; Czarny, P.; Milczarek, J.; Toma, M.; Korycinska, A.; Szemraj, J.; Sliwinski, T. Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles. Toxicol. Mech. Methods 2015, 25, 176–183. [Google Scholar] [CrossRef]
- Du, J.; Tang, J.; Xu, S.; Ge, J.; Dong, Y.; Li, H.; Jin, M. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul. Toxicol. Pharmacol. 2018, 98, 231–239. [Google Scholar] [CrossRef]
- George, J.M.; Magogotya, M.; Vetten, M.A.; Buys, A.V.; Gulumian, M. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays. Toxicol. Sci. 2017, 156, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Asghar, W.; Shafiee, H.; Velasco, V.; Sah, V.R.; Guo, S.; El Assal, R.; Inci, F.; Rajagopalan, A.; Jahangir, M.; Anchan, R.M.; et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016, 6, 30270. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, G.; D’Agati, M.; Khan, A.M.; Sitharaman, B. Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 2016, 105, 109–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugadoss, S.; Lison, D.; Godderis, L.; Van Den Brule, S.; Mast, J.; Brassinne, F.; Sebaihi, N.; Hoet, P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol. 2017, 91, 2967–3010. [Google Scholar] [CrossRef]
- Naha, P.C.; Mukherjee, S.P.; Byrne, H.J. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. Int. J. Environ. Res. Public Health 2018, 15, 338. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zhang, Y. The Overview of Methods of Nanoparticle Exposure Assessment. Methods Mol. Biol. 2019, 1894, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Chawla, J.; Singh, D.; Sundaram, B.; Kumar, A. Identifying Challenges in Assessing Risks of Exposures of Silver Nanoparticles. Expo. Health 2017, 10, 61–75. [Google Scholar] [CrossRef]
- Mackevica, A.; Foss Hansen, S. Release of nanomaterials from solid nanocomposites and consumer exposure assessment—A forward-looking review. Nanotoxicology 2016, 10, 641–653. [Google Scholar] [CrossRef]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1513. [Google Scholar] [CrossRef]
- Warheit, D.B. Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? F1000Research 2018, 7, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landsiedel, R.; Ma-Hock, L.; Kroll, A.; Hahn, D.; Schnekenburger, J.; Wiench, K.; Wohlleben, W. Testing metal-oxide nanomaterials for human safety. Adv. Mater. 2010, 22, 2601–2627. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Yamashita, K.; Nabeshi, H.; Yoshikawa, T.; Yoshioka, Y.; Tsunoda, S.I.; Tsutsumi, Y. Carbon Nanomaterials: Efficacy and Safety for Nanomedicine. Materials 2012, 5, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Coccini, T.; Manzo, L.; Roda, E. Safety evaluation of engineered nanomaterials for health risk assessment: An experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN Toxicol. 2013, 2013, 825427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Li, J.; Tang, J.; Chen, C.; Zhao, Y. Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment. Small 2016, 12, 5488–5496. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.M.; Neun, B.W.; Dobrovolskaia, M.A. In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions. Methods Mol. Biol. 2018, 1682, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1223&from=PT (accessed on 20 February 2018).
- ISO. ISO/TS 80004-2:2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en (accessed on 16 April 2018).
- Cigerci, I.H.; Ali, M.M.; Kaygisiz, S.Y.; Kaya, B.; Liman, R. Genotoxic Assessment of Different Sizes of Iron Oxide Nanoparticles and Ionic Iron in Earthworm (Eisenia hortensis) Coelomocytes by Comet Assay and Micronucleus Test. Bull. Environ. Contam. Toxicol. 2018, 101, 105–109. [Google Scholar] [CrossRef]
- Konen-Adiguzel, S.; Ergene, S. In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicol. Ind. Health 2018, 34, 293–300. [Google Scholar] [CrossRef]
- Di Bucchianico, S.; Cappellini, F.; Le Bihanic, F.; Zhang, Y.; Dreij, K.; Karlsson, H.L. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 2017, 32, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Walczynska, M.; Jakubowski, W.; Wasiak, T.; Kadziola, K.; Bartoszek, N.; Kotarba, S.; Siatkowska, M.; Komorowski, P.; Walkowiak, B. Toxicity of silver nanoparticles, multiwalled carbon nanotubes, and dendrimers assessed with multicellular organism Caenorhabditis elegans. Toxicol. Mech. Methods 2018, 28, 432–439. [Google Scholar] [CrossRef]
- Genc, H.; Barutca, B.; Koparal, A.T.; Ozogut, U.; Sahin, Y.; Suvaci, E. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells. Toxicol. Vitr. 2018, 47, 238–248. [Google Scholar] [CrossRef]
- Lee, W.S.; Kim, E.; Cho, H.J.; Kang, T.; Kim, B.; Kim, M.Y.; Kim, Y.S.; Song, N.W.; Lee, J.S.; Jeong, J. The Relationship between Dissolution Behavior and the Toxicity of Silver Nanoparticles on Zebrafish Embryos in Different Ionic Environments. Nanomaterials 2018, 8, 652. [Google Scholar] [CrossRef] [Green Version]
- Avalos, A.; Haza, A.I.; Mateo, D.; Morales, P. In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes by comet and SMART assays. Food Chem. Toxicol. 2018, 120, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Tanaka, J.; Kobayashi, N.; Naya, M.; Endoh, S.; Maru, J.; Hosoi, M.; Nagai, M.; Nakajima, M.; Hayashi, M.; et al. Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells of intratracheally instilled rats. Regul. Toxicol. Pharmacol. 2012, 62, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Kim, Y.; Yang, J.; Roca, C.P.; Joo, S.W.; Choi, J. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 2017, 11, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Yaghini, E.; Turner, H.; Pilling, A.; Naasani, I.; MacRobert, A. In vivo biodistribution and toxicology studies of cadmium-free indium-based quantum dot nanoparticles in a rat model. Nanomedicine 2018, 14, 2644–2655. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Liu, L.; Huang, C.; Zhou, D.; Fu, L. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio. Carbohydr. Polym. 2016, 141, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Morais, R.P.; Hochheim, S.; de Oliveira, C.C.; Riegel-Vidotti, I.C.; Marino, C.E.B. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int. J. Pharm. 2022, 614, 121439. [Google Scholar] [CrossRef]
- De Matteis, V.; Rinaldi, R. Toxicity Assessment in the Nanoparticle Era. Adv. Exp. Med. Biol. 2018, 1048, 1–19. [Google Scholar] [CrossRef]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Wang, X.J. Induction of the Keap1/Nrf2/ARE pathway by oxidizable diphenols. Chem. -Biol. Interact. 2011, 192, 101–106. [Google Scholar] [CrossRef]
- Wu, K.C.; McDonald, P.R.; Liu, J.J.; Chaguturu, R.; Klaassen, C.D. Implementation of a high-throughput screen for identifying small molecules to activate the Keap1-Nrf2-ARE pathway. PLoS ONE 2012, 7, e44686. [Google Scholar] [CrossRef]
- Tsujita-Inoue, K.; Hirota, M.; Atobe, T.; Ashikaga, T.; Tokura, Y.; Kouzuki, H. Development of novel in vitro photosafety assays focused on the Keap1-Nrf2-ARE pathway. J. Appl. Toxicol. 2016, 36, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Roscoe, L.; Longmore, C.; Bailey, F.; Sim, B.; Treasure, C. Adaptation of the human Cell Line Activation Test (h-CLAT) to Animal-Product-Free Conditions. Altex 2018, 35, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Narita, K.; Ishii, Y.; Vo, P.T.H.; Nakagawa, F.; Ogata, S.; Yamashita, K.; Kojima, H.; Itagaki, H. Improvement of human cell line activation test (h-CLAT) using short-time exposure methods for prevention of false-negative results. J. Toxicol. Sci. 2018, 43, 229–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsubo, Y.; Nishijo, T.; Miyazawa, M.; Saito, K.; Mizumachi, H.; Sakaguchi, H. Binary test battery with KeratinoSens and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction. Regul. Toxicol. Pharmacol. 2017, 88, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ashikaga, T.; Kouzuki, H. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens and in silico structure alert parameter. J. Appl. Toxicol. 2018, 38, 514–526. [Google Scholar] [CrossRef]
- Zhang, F.; Erskine, T.; Klapacz, J.; Settivari, R.; Marty, S. A highly sensitive and selective high pressure liquid chromatography with tandem mass spectrometry (HPLC/MS-MS) method for the direct peptide reactivity assay (DPRA). J. Pharmacol. Toxicol. Methods 2018, 94, 1–15. [Google Scholar] [CrossRef]
- Michael, K.; Robinson, R.O.; Perkins, M.A. In Vitro tests for skin irritation. In Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Bosshart, H.; Heinzelmann, M. THP-1 cells as a model for human monocytes. Ann. Transl. Med. 2016, 4, 438. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, S.; Kleinstreuer, N.; Alepee, N.; Allen, D.; Api, A.M.; Ashikaga, T.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-animal methods to predict skin sensitization (I): The Cosmetics Europe database. Crit. Rev. Toxicol. 2018, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ubels, J.L.; Ditlev, J.A.; Clousing, D.P.; Casterton, P.L. Corneal permeability in a redesigned corneal holder for the bovine cornea opacity and permeability assay. Toxicol. Vitr. 2004, 18, 853–857. [Google Scholar] [CrossRef]
- Zanvit, A.; Meunier, P.A.; Clothier, R.; Ward, R.; Buiatti-Tcheng, M. Ocular irritancy assessment of cosmetics formulations and ingredients: Fluorescein leakage test. Toxicol. Vitr. 1999, 13, 385–391. [Google Scholar] [CrossRef]
- Lee, M.; Hwang, J.H.; Lim, K.M. Alternatives to In Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-Like Epithelium and Epidermis Models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Kim, D.E.; Jang, W.H.; An, S.; Cho, S.A.; Jung, M.S.; Lee, J.E.; Yeo, K.W.; Koh, S.B.; Jeong, T.C.; et al. Prevalidation trial for a novel in vitro eye irritation test using the reconstructed human cornea-like epithelial model, MCTT HCE. Toxicol. Vitr. 2017, 39, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Joo, K.M.; Choi, S.; Lee, S.H.; Kim, S.Y.; Chun, Y.J.; Choi, D.; Lim, K.M. Nervonoylceramide (C24:1Cer), a lipid biomarker for ocular irritants released from the 3D reconstructed human cornea-like epithelium, MCTT HCE. Toxicol. Vitr. 2018, 47, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.J.; Kwon, Y.J.; Baek, H.S.; Shin, S.; Lee, C.; Yun, J.W.; Nam, K.T.; Lim, K.M.; Chun, Y.J. Discovery of ezrin expression as a potential biomarker for chemically induced ocular irritation using human corneal epithelium cell line and a reconstructed human cornea-like epithelium model. Toxicol. Sci. 2018, 165, 335–346. [Google Scholar] [CrossRef]
- Tiwari, N.; Osorio-Blanco, E.R.; Sonzogni, A.; Esporrin-Ubieto, D.; Wang, H.; Calderon, M. Nanocarriers for Skin Applications: Where Do We Stand? Angew. Chem. Int. Ed. Engl. 2022, 61, e202107960. [Google Scholar] [CrossRef]
- Patzelt, A.; Lademann, J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin. Drug Deliv. 2020, 17, 49–60. [Google Scholar] [CrossRef]
- Khezri, K.; Saeedi, M.; Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 2018, 106, 1499–1505. [Google Scholar] [CrossRef]
- Elmowafy, M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B Biointerfaces 2021, 203, 111748. [Google Scholar] [CrossRef]
- Iqbal, B.; Ali, J.; Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol. 2018, 57, 646–660. [Google Scholar] [CrossRef]
- Gimeno-Benito, I.; Giusti, A.; Dekkers, S.; Haase, A.; Janer, G. A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul. Toxicol. Pharmacol. 2021, 119, 104836. [Google Scholar] [CrossRef] [PubMed]
- Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Cogliano, V. Carcinogenicity of some aromatic amines, organic dyes, and related exposures. Lancet Oncol. 2008, 9, 322–323. [Google Scholar] [CrossRef]
- Gera, R.; Mokbel, R.; Igor, I.; Mokbel, K. Does the Use of Hair Dyes Increase the Risk of Developing Breast Cancer? A Meta-analysis and Review of the Literature. Anticancer. Res. 2018, 38, 707–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkinen, S.; Pitkaniemi, J.; Sarkeala, T.; Malila, N.; Koskenvuo, M. Does Hair Dye Use Increase the Risk of Breast Cancer? A Population-Based Case-Control Study of Finnish Women. PLoS ONE 2015, 10, e0135190. [Google Scholar] [CrossRef] [PubMed]
- Andrew, A.S.; Schned, A.R.; Heaney, J.A.; Karagas, M.R. Bladder cancer risk and personal hair dye use. Int. J. Cancer 2004, 109, 581–586. [Google Scholar] [CrossRef]
- Ros, M.M.; Gago-Dominguez, M.; Aben, K.K.; Bueno-de-Mesquita, H.B.; Kampman, E.; Vermeulen, S.H.; Kiemeney, L.A. Personal hair dye use and the risk of bladder cancer: A case-control study from The Netherlands. Cancer Causes Control 2012, 23, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turati, F.; Pelucchi, C.; Galeone, C.; Decarli, A.; La Vecchia, C. Personal hair dye use and bladder cancer: A meta-analysis. Ann. Epidemiol. 2014, 24, 151–159. [Google Scholar] [CrossRef]
- Goebel, C.; Diepgen, T.L.; Blomeke, B.; Gaspari, A.A.; Schnuch, A.; Fuchs, A.; Schlotmann, K.; Krasteva, M.; Kimber, I. Skin sensitization quantitative risk assessment for occupational exposure of hairdressers to hair dye ingredients. Regul. Toxicol. Pharmacol. 2018, 95, 124–132. [Google Scholar] [CrossRef]
- Tanaka, N.; Bohnenberger, S.; Kunkelmann, T.; Munaro, B.; Ponti, J.; Poth, A.; Sabbioni, E.; Sakai, A.; Salovaara, S.; Sasaki, K.; et al. Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals. Mutat. Res. 2012, 744, 20–29. [Google Scholar] [CrossRef]
- Poburski, D.; Thierbach, R. Improvement of the BALB/c-3T3 cell transformation assay: A tool for investigating cancer mechanisms and therapies. Sci. Rep. 2016, 6, 32966. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, M.; Verhoef, A.; Pennings, J.L.A.; van Ravenzwaay, B.; Rietjens, I.; Piersma, A.H. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017, 392, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Verhoef, A.; Gomes, C.A.; van Dongen, C.W.; Rietjens, I.; Piersma, A.H.; van Ravenzwaay, B. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles. Toxicol. Lett. 2018, 286, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Fautz, R.; Benech-Kieffer, F.; Toutain, H. Toxicity and human health risk of hair dyes. Food Chem. Toxicol. 2004, 42, 517–543. [Google Scholar] [CrossRef] [PubMed]
- Uco, D.P.; Leite-Silva, V.R.; Silva, H.D.T.; Duque, M.D.; Grice, J.; Mathor, M.B.; Andreo-Filho, N.; Lopes, P.S. UVA and UVB formulation phototoxicity in a three-dimensional human skin model: Photodegradation effect. Toxicol. Vitr. 2018, 53, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosley-Foreman, C.; Choi, J.; Wang, S.; Yu, H. Phototoxicity of phenylenediamine hair dye chemicals in Salmonella typhimurium TA102 and human skin keratinocytes. Food Chem. Toxicol. 2008, 46, 3780–3784. [Google Scholar] [CrossRef] [Green Version]
- de Avila, R.I.; Teixeira, G.C.; Veloso, D.; Moreira, L.C.; Lima, E.M.; Valadares, M.C. In vitro assessment of skin sensitization, photosensitization and phototoxicity potential of commercial glyphosate-containing formulations. Toxicol. Vitr. 2017, 45, 386–392. [Google Scholar] [CrossRef]
- Nam, C.; An, S.; Lee, E.; Moon, S.; Kang, J.; Chang, I. An in vitro phototoxicity assay battery (photohaemolysis and 3T3 NRU PT test) to assess phototoxic potential of fragrances. Altern. Lab. Anim. 2004, 32, 693–697. [Google Scholar] [CrossRef]
- Jirova, D.; Kejlova, K.; Bendova, H.; Ditrichova, D.; Mezulanikova, M. Phototoxicity of bituminous tars-correspondence between results of 3T3 NRU PT, 3D skin model and experimental human data. Toxicol. Vitr. 2005, 19, 931–934. [Google Scholar] [CrossRef]
- Guerard, M.; Zeller, A.; Singer, T.; Gocke, E. In vitro genotoxicity of neutral red after photo-activation and metabolic activation in the Ames test, the micronucleus test and the comet assay. Mutat. Res. 2012, 746, 15–20. [Google Scholar] [CrossRef]
- Struwe, M.; Csato, M.; Singer, T.; Gocke, E. Comprehensive assessment of the photomutagenicity, photogenotoxicity and photo(cyto)toxicity of azulene. Mutat. Res. 2011, 723, 129–133. [Google Scholar] [CrossRef]
- Bernard, A.; Houssin, A.; Ficheux, A.S.; Wesolek, N.; Nedelec, A.S.; Bourgeois, P.; Hornez, N.; Batardiere, A.; Misery, L.; Roudot, A.C. Consumption of hair dye products by the French women population: Usage pattern and exposure assessment. Food Chem. Toxicol. 2016, 88, 123–132. [Google Scholar] [CrossRef] [PubMed]
- SCCP. Updated Recommended Strategy. For. Testing Oxidative Hair Dye Substances for Their Potential mutagenicity/Genotoxicity. In SCCP’S Notes Of Guidance; European Commission Health & Consumer: Bruxelles, Belgium, 2006. [Google Scholar]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD: Paris, France, 1997. [Google Scholar]
- OECD. Test No. 476: In Vitro Mammalian Cell Gene Mutation Test; OECD: Paris, France, 1997. [Google Scholar]
- OECD. Test No. 473: In Vitro Mammalian Chromosome Aberration Test; OECD: Paris, France, 1997. [Google Scholar]
- OECD. Test No. 482: Genetic Toxicology: DNA Damage and Repair, Unscheduled DNA Synthesis in Mammalian Cells In Vitro; OECD: Paris, France, 1986. [Google Scholar]
- Ates, G.; Steinmetz, F.P.; Doktorova, T.Y.; Madden, J.C.; Rogiers, V. Linking existing in vitro dermal absorption data to physicochemical properties: Contribution to the design of a weight-of-evidence approach for the safety evaluation of cosmetic ingredients with low dermal bioavailability. Regul. Toxicol. Pharmacol. 2016, 76, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanode, R.; Chandra, S.; Sharma, S. Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens. Toxicol. Mech. Methods 2017, 27, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; Zhang, J.; Lin, Y.; Wang, X.; Zhang, K.; Zhang, L.; Zheng, W.; Wang, M.; Li, T.; Xiao, S.; et al. Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul. Toxicol. Pharmacol. 2015, 71, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.; Dambowsky, M.; Hempt, C.; Sutter, A.; Queisser, N. Classification of in vitro genotoxicants using a novel multiplexed biomarker assay compared to the flow cytometric micronucleus test. Environ. Mol. Mutagenesis 2017, 58, 662–677. [Google Scholar] [CrossRef] [Green Version]
- Marzin, D.; Kirkland, D. 2-Hydroxy-1,4-naphthoquinone, the natural dye of Henna, is non-genotoxic in the mouse bone marrow micronucleus test and does not produce oxidative DNA damage in Chinese hamster ovary cells. Mutat. Res. 2004, 560, 41–47. [Google Scholar] [CrossRef]
- Hossack, D.J.; Richardson, J.C. Examination of the potential mutagenicity of hair dye constituents using the micronucleus test. Experientia 1977, 33, 377–378. [Google Scholar] [CrossRef]
- Przybojewska, B. An evaluation of the genotoxic properties of some chosen dyes using the micronucleus test in vivo. Mutat. Res. 1996, 367, 93–97. [Google Scholar] [CrossRef]
- Johnson, G.E. Mammalian cell HPRT gene mutation assay: Test methods. Methods Mol. Biol. 2012, 817, 55–67. [Google Scholar] [CrossRef]
- Townsend, M.H.; Robison, R.A.; O’Neill, K.L. A review of HPRT and its emerging role in cancer. Med. Oncol. 2018, 35, 89. [Google Scholar] [CrossRef]
- Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13, 1408. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.; Flora, S.J.S. Nanomaterial’s toxicity and its regulation strategies. J. Environ. Biol. 2020, 41, 659–671. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jeong, Y.I.; Kim, D.H.; Choi, K.C. Permanent hair dye-incorporated hyaluronic acid nanoparticles. J. Microencapsul. 2013, 30, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Jeong, Y.I.; Choi, K.C. Hair dye-incorporated poly-gamma-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int. J. Nanomed. 2011, 6, 2879–2888. [Google Scholar] [CrossRef] [Green Version]
- Catalogue of Nanomaterials in Cosmetic Products Placed on the Market—Version 2; European Commission Health & Consumer: Bruxelles, Belgium, 2018.
- Saifi, M.A.; Khan, W.; Godugu, C. Cytotoxicity of Nanomaterials: Nanotoxicology to Address the Safety Concerns of Nanoparticles. Pharm. Nanotechnol. 2018, 6, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.A.; Di Silvio, D.; Devarajan, A.; Bigini, P.; Micotti, E.; Giudice, C.; Salmona, M.; Wheeler, G.N.; Sherwood, V.; Bombelli, F.B. An early developmental vertebrate model for nanomaterial safety: Bridging cell-based and mammalian toxicity assessment. Nanomedicine 2016, 11, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Qiao, J.; Bai, R.; Zhao, Y.; Chen, C. Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal. Bioanal. Chem. 2018, 410, 6051–6066. [Google Scholar] [CrossRef]
- Burden, N.; Aschberger, K.; Chaudhry, Q.; Clift, M.J.D.; Fowler, P.; Johnston, H.; Landsiedel, R.; Rowland, J.; Stone, V.; Doak, S.H. Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regul. Toxicol. Pharmacol. 2017, 91, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.E.; Nasser, E.; Godwin, H.; Avery, D.; Bahadori, T.; Bergeson, L.; Beryt, E.; Bonner, J.C.; Boverhof, D.; Carter, J.; et al. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano 2013, 7, 6422–6433. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.E. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J. Intern. Med. 2013, 274, 561–577. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, T.K.; Bhattacharyya, K.; Datta, A. Gauging the Nanotoxicity of h2D-C2N toward Single-Stranded DNA: An in Silico Molecular Simulation Approach. ACS Appl. Mater. Interfaces 2018, 10, 13805–13818. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, R.; George, S.; Li, M.; Pokhrel, S.; Ji, Z.; France, B.; Xia, T.; Suarez, E.; Rallo, R.; Madler, L.; et al. No time to lose--high throughput screening to assess nanomaterial safety. Nanoscale 2011, 3, 1345–1360. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.; Xia, T.; Meng, H.; Wang, X.; Lin, S.; Ji, Z.; Zhang, H. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Groso, A.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hofmann, H.; Meyer, T. Engineered nanomaterials: Toward effective safety management in research laboratories. J. Nanobiotechnology 2016, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, M.; Filser, J.; Luderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.; Liu, Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment. J. Environ. Manag. 2017, 191, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Cledon, M.; Hristovski, K.D. The ongoing quest for understanding the novel environmental applications and implications of nanotechnology. Sci. Total Environ. 2018, 618, 1088. [Google Scholar] [CrossRef]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: Air, soil, and water. Environ. Sci. Pollut. Res. Int. 2016, 23, 13754–13788. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zhu, T.; Wang, A.; Lu, Y.; Lv, L.; Zhang, K.; Li, Z. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci. Total Environ. 2018, 634, 616–627. [Google Scholar] [CrossRef]
- Ghaemi, N.; Safari, P. Nano-porous SAPO-34 enhanced thin-film nanocomposite polymeric membrane: Simultaneously high water permeation and complete removal of cationic/anionic dyes from water. J. Hazard. Mater. 2018, 358, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Yihan, S.; Mingming, L.; Guo, Z. Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes. J. Colloid Interface Sci. 2018, 527, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, A.; Zhang, L.; Zhu, X.; Chen, B. Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water. Environ. Sci. Technol. 2018, 52, 4265–4274. [Google Scholar] [CrossRef] [PubMed]
- Wis-Surel, G.M. Some challenges in modern hair colour formulations. Int. J. Cosmet. Sci. 1999, 21, 327–340. [Google Scholar] [CrossRef]
- Shvedova, A.; Pietroiusti, A.; Kagan, V. Nanotoxicology ten years later: Lights and shadows. Toxicol. Appl. Pharmacol. 2016, 299, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, D.W. Nanotoxicology: The Toxicology of Nanomaterials and Nanostructures. Int. J. Toxicol. 2016, 35, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, C.; Yao, C.; Ding, L.; Lei, Z.; Wu, M. Techniques for Investigating Molecular Toxicology of Nanomaterials. J. Biomed. Nanotechnol. 2016, 12, 1115–1135. [Google Scholar] [CrossRef]
- Manganelli, S.; Benfenati, E. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells. Methods Mol. Biol. 2017, 1601, 275–290. [Google Scholar] [CrossRef]
- Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175–178. [Google Scholar] [CrossRef]
- Gajewicz, A.; Schaeublin, N.; Rasulev, B.; Hussain, S.; Leszczynska, D.; Puzyn, T.; Leszczynski, J. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology 2015, 9, 313–325. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A.; Veselinovic, A.M.; Veselinovic, J.B.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol. Environ. Saf. 2016, 124, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enslein, K.; Borgstedt, H.H. A QSAR model for the estimation of carcinogenicity: Example application to an azo-dye. Toxicol. Lett. 1989, 49, 107–121. [Google Scholar] [CrossRef]
- Ventura, C.; Sousa-Uva, A.; Lavinha, J.; Silva, M.J. Conventional and novel “omics”-based approaches to the study of carbon nanotubes pulmonary toxicity. Environ. Mol. Mutagenesis 2018, 59, 334–362. [Google Scholar] [CrossRef] [PubMed]
- Nath Roy, D.; Goswami, R.; Pal, A. Nanomaterial and toxicity: What can proteomics tell us about the nanotoxicology? Xenobiotica 2017, 47, 632–643. [Google Scholar] [CrossRef] [PubMed]
NPs | Study | Model | Test | Ref. |
---|---|---|---|---|
Iron Oxide and Ionic Iron NPs | Genotoxicity (in vivo) | Earthworm Coelomocytes | Comet Assay Micronucleus test | [44] |
Cerium Dioxide NPs | Genotoxicity (in vitro) | Human peripheral blood lymphocytes | Comet assay Micronucleus test Gamma H2AX | [45] |
Titanium Dioxide NPs | Genotoxicity | Human bronchial epithelial BEAS-2B cells | Mini-gel comet assay and micronucleus test | [46] |
AgNPs | Toxicity | Caenorhabditis elegans | Population-based observations Gene expression analysis | [47] |
Multiwalled Carbon Nanotubes | ||||
Dendrimers | ||||
Micro-nano zinc oxide NPs | Cytotoxicity Genotoxicity Phototoxicity | Human skin keratinocyte cells | Comet assay (geno) UV radiation (photo) NRU assay MTT assay Intracellular ROS determination JC-1 staining | [48] |
AgNPs | Toxicity | Zebrafish embryos | NA | [49] |
AuNPs | Genotoxicity (in vitro/in vivo) | Drosophylla (in vivo) | Comet assay SMART assay | [50] |
Fullerene | Genotoxicity (in vivo) | Rat lung cells | Comet assay | [51] |
Graphene | Toxicology | Caenorhabditis elegans | Transcriptomics Network-based pathway analysis | [52] |
Indium-based quantum dot NPs | Biodistribution (in vivo) Toxicology | Rat model | NA | [53] |
Chitosan NPs | Toxicology (embryonic) | Zebrafish | NA | [54] |
Irritation and corrosivity (skin and eye) (1) |
Skin sensitization (2) |
Dermal/percutaneous absorption (3) |
Repeated dose toxicity (4) |
Mutagenicity/genotoxicity (5) |
Carcinogenicity (6) |
Reproductive toxicology (7) |
Photo-induced toxicity (8) |
Human data (9) |
Cell Culture | HaCaT Cells | Ref. | ||
---|---|---|---|---|
Variable studied | Cytotoxicity | Apoptosis and Necrosis (Reagents: PI and FITC-annexin V) | Apoptosis | [118] |
Technique | MTT assay | Flow Cytometry Analysis | TUNEL assay of HaCaT cells | [118] |
NP | PDA-2 (50:10:05) a Reduction PDA cytotoxicity by nanoparticle formation | PDA-2 (50:10:05) a Reduction PDA cytotoxicity by nanoparticle formation | NA | [119] |
Form. 9/1 (45/5) b Reduced intrinsic toxicity | Form. 9/1 (45/5) b Reduced intrinsic toxicity | Form. 9/1 (45/5) b Reduced intrinsic toxicity | [118] |
Oxidative Combination | RP | Concentration (% w/w) in the Formulation | EMEE % (w/w) a | RP Concentrations Tested in 72 h DP Study (%) | LD in Receptor Fluids (pg/cm2) | Estimated BA Mean +1 SD (ng/cm2) | Exposure Per Day (µg/day) b |
---|---|---|---|---|---|---|---|
p-toluenediamine (A005) + m-aminophenol (A015) | Trimer A005-A015-A005 | 0.14 | 0.07 | 1.0; 0.3; 0.1 | 2.0 | 461.89 | 9.57 |
p-aminophenol (A016) + 4-amino-2-hydroxytoluene (A027) | Dimer A016-A027 | 0.14 | 0.07 | 1.0; 0.3; 0.1 | 2.2 | 717.79 | 14.87 |
N,N-dihydroxyethyl-p-phenylenediamine (A050) + maminophenol (A015) | Trimer A050-A015-A050 | 0.50 | 0.26 | 1.0; 0.5; 0.25 | 2.8 | 3.27 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra, S.C.; Sousa-Oliveira, I.; Ferreira-Faria, I.; Peixoto, D.; Pereira-Silva, M.; Mathur, A.; Pawar, K.D.; Raza, F.; Mazzola, P.G.; Mascarenhas-Melo, F.; et al. Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products. Cosmetics 2022, 9, 83. https://doi.org/10.3390/cosmetics9040083
Coimbra SC, Sousa-Oliveira I, Ferreira-Faria I, Peixoto D, Pereira-Silva M, Mathur A, Pawar KD, Raza F, Mazzola PG, Mascarenhas-Melo F, et al. Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products. Cosmetics. 2022; 9(4):83. https://doi.org/10.3390/cosmetics9040083
Chicago/Turabian StyleCoimbra, Sara Cabanas, Inês Sousa-Oliveira, Inês Ferreira-Faria, Diana Peixoto, Miguel Pereira-Silva, Ankita Mathur, Kiran D. Pawar, Faisal Raza, Priscila Gava Mazzola, Filipa Mascarenhas-Melo, and et al. 2022. "Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products" Cosmetics 9, no. 4: 83. https://doi.org/10.3390/cosmetics9040083
APA StyleCoimbra, S. C., Sousa-Oliveira, I., Ferreira-Faria, I., Peixoto, D., Pereira-Silva, M., Mathur, A., Pawar, K. D., Raza, F., Mazzola, P. G., Mascarenhas-Melo, F., Veiga, F., & Paiva-Santos, A. C. (2022). Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products. Cosmetics, 9(4), 83. https://doi.org/10.3390/cosmetics9040083