Virtual Router Design and Modeling for Future Networks with QoS Guarantees
Abstract
:1. Introduction
2. Related Work
3. Models to Improve QoS Parameters in Future Internet with Regard to Network Nodes Virtualization
3.1. Static and Dynamic Virtualization Model of Router Resources
- Periodic control of the main indicators of the QoS (delays, packet losses of different priority classes);
- Automatic decision-making to change the computing resources of virtual routers, depending on the input load and the corresponding quality of service indicators to the established norms.
3.2. Analytical Representation of Virtual Infrastructure Service of Quality Parameters
3.3. Analytical Model of a Multiple Virtual Routers
4. Simulation Results
4.1. Modeling and Comparison of Information Flow Service Systems with Static Reconfiguration of Router Resources and Queued Packet Processing
4.2. Modeling and Comparison of Information Flow Service Systems with Dynamic Reconfiguration of Router Resources and Queued Packet Processing
4.3. Modeling of Incoming Flows Service Systems with Static and Dynamic Reconfiguration of Node Resources and Comparison with Priority Packet Processing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erjavec, H.; Dmitrovic, T.; Povalej, P. Drivers of Customer Satisfaction and Loyalty in Service Industries. J. Bus. Econ. Manag. 2016, 17, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Barakabitze, A.A.; Barman, N.; Ahmad, A.; Zadtootaghaj, S.; Sun, L.; Martini, M.G.; Atzori, L. QoE Management of Multimedia Streaming Services in Future Networks: A Tutorial and Survey. IEEE Commun. Surv. Tutor. 2020, 22, 526–565. [Google Scholar] [CrossRef] [Green Version]
- Hewage, C.; Ekmekcioglu, E. Multimedia Quality of Experience (QoE): Current Status and Future Direction. Future Internet 2020, 12, 121. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Hwang, P.-C.; Hwang, W.-S.; Cheng, M.-H. Artificial Intelligence Enabled Routing in Software Defined Networking. Appl. Sci. 2020, 10, 6564. [Google Scholar] [CrossRef]
- Ujcich, B.E.; Bates, A.; Sanders, W.H. Provenance for Intent-Based Networking. In Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 29 June–3 July 2020; pp. 195–199. [Google Scholar]
- Hussain, M.; Shah, N.; Tahir, A. Graph-Based Policy Change Detection and Implementation in SDN. Electronics 2019, 8, 1136. [Google Scholar] [CrossRef] [Green Version]
- Faraz, M.; Ismail, M. INMTD: Intent-based Moving Target Defense Framework using Software Defined Networks. Eng. Technol. Appl. Sci. Res. 2020, 10, 5142–5147. [Google Scholar]
- Li, Q.; Wang, X.; Wang, D.; Zhang, Y.; Lan, Y.; Liu, Q.; Song, L. Analysis of an SDN-Based Cooperative Caching Network with Heterogeneous Contents. Electronics 2019, 8, 1491. [Google Scholar] [CrossRef] [Green Version]
- Abbas, K.; Afaq, M.; Ahmed Khan, T.; Rafiq, A.; Song, W.-C. Slicing the Core Network and Radio Access Network Domains through Intent-Based Networking for 5G Networks. Electronics 2020, 9, 1710. [Google Scholar] [CrossRef]
- Pang, L.; Yang, C.; Chen, D.; Song, Y.; Guizani, M. A survey on intent-driven networks. IEEE Access 2020, 8, 22862–22873. [Google Scholar] [CrossRef]
- Ferrus, R.; Sallent, O.; Pérez-Romero, J.; Agusti, R. On 5G radio access network slicing: Radio interface protocol features and configuration. IEEE Commun. Mag. 2018, 56, 184–192. [Google Scholar] [CrossRef]
- Beshley, M.; Veselý, P.; Pryslupskyi, A.; Beshley, H.; Kyryk, M.; Romanchuk, V.; Kahalo, I. Customer-Oriented Quality of Service Management Method for the Future Intent-Based Networking. Appl. Sci. 2020, 10, 8223. [Google Scholar] [CrossRef]
- Beshley, M.; Pryslupskyi, A.; Panchenko, O.; Beshley, H. SDN/Cloud Solutions for Intent-Based Networking. In Proceedings of the 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT), Lviv, Ukraine, 2–6 July 2019; pp. 22–25. [Google Scholar]
- Beshley, M.; Pryslupskyi, A.; Panchenko, O.; Seliuchenko, M. Dynamic Switch Migration Method Based on QoE- Aware Priority Marking for Intent-Based Networking. In Proceedings of the 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 20–23 February 2020; pp. 864–868. [Google Scholar]
- Rafiq, A.; Mehmood, A.; Ahmed Khan, T.; Abbas, K.; Afaq, M.; Song, W.-C. Intent-Based End-to-End Network Service Orchestration System for Multi-Platforms. Sustainability 2020, 12, 2782. [Google Scholar] [CrossRef] [Green Version]
- Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9, 16193–16210. [Google Scholar] [CrossRef]
- Lin, Y.-B.; Tseng, C.-C.; Wang, M.-H. Effects of Transport Network Slicing on 5G Applications. Future Internet 2021, 13, 69. [Google Scholar] [CrossRef]
- Ye, Z.; Zhong, Y.; Wei, Y. A Virtual Network Resource Allocation Framework Based on SR-IOV. Appl. Sci. 2019, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, L.; Lo Bello, L.; Aglianò, S. Priority-Based Bandwidth Management in Virtualized Software-Defined Networks. Electronics 2020, 9, 1009. [Google Scholar] [CrossRef]
- Paliwal, M.; Shrimankar, D. Effective Resource Management in SDN Enabled Data Center Network Based on Traffic Demand. IEEE Access 2019, 7, 69698–69706. [Google Scholar] [CrossRef]
- Blenk, A.; Basta, A.; Reisslein, M.; Kellerer, W. Survey on Network Virtualization Hypervisors for Software Defined Networking. IEEE Commun. Surv. Tutor. 2016, 18, 655–685. [Google Scholar] [CrossRef] [Green Version]
- Monowar, M.M.; Rahman, M.O.; Hong, C.S.; Lee, S. MQ-MAC: A Multi-Constrained QoS-Aware Duty Cycle MAC for Heterogeneous Traffic in Wireless Sensor Networks. Sensors 2010, 10, 9771–9798. [Google Scholar] [CrossRef] [Green Version]
- Klymash, M.; Beshley, M.; Stryhaluk, B. System for Increasing Quality of Service of Multimedia Data in Convergent Networks. In Proceedings of the 2014 First International Scientific-Practical Conference Problems of Infocommunications Science and Technology, Kharkov, Ukraine, 22 December 2014; pp. 63–66. [Google Scholar]
- Beshley, M.; Romanchuk, V.; Seliuchenko, M.; Masiuk, A. Investigation the Modified Priority Queuing Method Based on Virtualized Network Test Bed. In Proceedings of the Experience of Designing and Application of CAD Systems in Microe-lectronics, Lviv, Ukraine, 24–27 February 2015; pp. 1–4. [Google Scholar]
- Romanchuk, V.; Beshley, M.; Panchenko, O.; Arthur, P. Design of Software Router with a Modular Structure and Automatic Deployment at Virtual Nodes. In Proceedings of the 2017 2nd International Conference on Advanced Information and Communication Technologies (AICT), Lviv, Ukraine, 4–7 July 2017; pp. 295–298. [Google Scholar]
- Lee, K.; Hong, C.-H.; Hwang, J.; Yoo, C. Dynamic Network Scheduling for Virtual Routers. IEEE Syst. J. 2020, 14, 3618–3629. [Google Scholar] [CrossRef]
- Efrosinin, D.; Stepanova, N.; Sztrik, J.; Plank, A. Approximations in Performance Analysis of a Controllable Queueing System with Heterogeneous Servers. Mathematics 2020, 8, 1803. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.-S.; Seok, J.-S.; Jin, H.-W. Virtualization of Industrial Real-Time Networks for Containerized Controllers. Sensors 2019, 19, 4405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suksomboon, K.; Matsumoto, N.; Okamoto, S.; Hayashi, M.; Ji, Y. Configuring a Software Router by the Erlang- k -Based Packet Latency Prediction. IEEE J. Sel. Areas Commun. 2018, 36, 422–437. [Google Scholar] [CrossRef]
- Rodriguez, E.; Alkmim, G.P.; Fonseca, N.L.S.; Batista, D.M. Energy-Aware Mapping and Live Migration of Virtual Networks. IEEE Syst. J. 2017, 11, 637–648. [Google Scholar] [CrossRef]
- Liu, X.; Medhi, D. Optimally Selecting Standby Virtual Routers for Node Failures in a Virtual Network Environment. IEEE Trans. Netw. Serv. Manag. 2017, 14, 275–288. [Google Scholar] [CrossRef]
- Lu, Q.; Yao, J.; Guan, H.; Gao, P. gQoS: A QoS-Oriented GPU Virtualization with Adaptive Capacity Sharing. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 843–855. [Google Scholar] [CrossRef]
- Cao, H.; Xiao, A.; Hu, Y.; Zhang, P.; Wu, S.; Yang, L. On Virtual Resource Allocation of Heterogeneous Networks in Virtualization Environment: A Service Oriented Perspective. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2468–2480. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhou, Y.; Zhang, D.; Liu, H. Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments. IEEE Trans. Cloud Comput. 2015, 3, 119–131. [Google Scholar] [CrossRef]
- Chang, Z.; Zhou, Z.; Zhou, S.; Chen, T.; Ristaniemi, T. Towards Service-Oriented 5G: Virtualizing the Networks for Everything-as-a-Service. IEEE Access 2018, 6, 1480–1489. [Google Scholar] [CrossRef]
- Kouvatsos, D.; Assi, S.A. Notice of Violation of IEEE Publication Principles: On the Analysis of Queues with Long Range Dependent Traffic: An Extended Maximum Entropy Approach. In Proceedings of the Next Generation Internet Networks, Trondheim, Norway, 21–23 May 2007; pp. 226–233. [Google Scholar]
CPU—Router Processor Frequency [MHz] | Average Packet Service Time [µs] |
---|---|
1400 | 10 |
850 | 20 |
650 | 25 |
450 | 35 |
The First Virtual Router | |
Distribution | Gaussian (normal) |
Mean | 30 |
Standard deviation | 3 |
Initial seed | 72,524 |
The Second Virtual Router | |
Distribution | Poisson |
Mean | 30 |
Initial seed | 72,524 |
The Third Virtual Router | |
Distribution | Poisson |
Mean | 30 |
Initial seed | 120,067 |
The Physical Router | |
Distribution | Poisson |
Mean | 13 |
Initial seed | 72,524 |
Time-Based Entity Generator for Video | |
Distribution | Exponential |
Mean | 45 |
Initial seed | 67,437 |
Generation event priority | 300 |
Time-Based Entity Generator for Voice | |
Distribution | Exponential |
Mean | 35 |
Initial seed | 67,437 |
Generation event priority | 300 |
Time-Based Entity Generator for Data | |
Distribution | Exponential |
Mean | 44 |
Initial seed | 61,687 |
Generation event priority | 300 |
The First Virtual Router | |
Distribution | Gaussian (normal) |
Mean | 32.5 |
Standard deviation | 3 |
Initial seed | 72,524 |
The Second Virtual Router | |
Distribution | Poisson |
Mean | 23 |
Initial seed | 72,524 |
The Third Virtual Router | |
Distribution | Poisson |
Mean | 34.5 |
Initial seed | 120,067 |
The Physical Router | |
Distribution | Poisson |
Mean | 13 |
Initial seed | 72,524 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beshley, M.; Kryvinska, N.; Beshley, H.; Yaremko, O.; Pyrih, J. Virtual Router Design and Modeling for Future Networks with QoS Guarantees. Electronics 2021, 10, 1139. https://doi.org/10.3390/electronics10101139
Beshley M, Kryvinska N, Beshley H, Yaremko O, Pyrih J. Virtual Router Design and Modeling for Future Networks with QoS Guarantees. Electronics. 2021; 10(10):1139. https://doi.org/10.3390/electronics10101139
Chicago/Turabian StyleBeshley, Mykola, Natalia Kryvinska, Halyna Beshley, Oleg Yaremko, and Julia Pyrih. 2021. "Virtual Router Design and Modeling for Future Networks with QoS Guarantees" Electronics 10, no. 10: 1139. https://doi.org/10.3390/electronics10101139
APA StyleBeshley, M., Kryvinska, N., Beshley, H., Yaremko, O., & Pyrih, J. (2021). Virtual Router Design and Modeling for Future Networks with QoS Guarantees. Electronics, 10(10), 1139. https://doi.org/10.3390/electronics10101139