Transmission Analysis in Human Body Communication for Head-Mounted Wearable Devices
Abstract
:1. Introduction
2. Proposed HBC System
3. Simulation Models
3.1. Human Body Models
3.2. Transceiver Electrode and Antenna Models
3.3. Simulation Conditions
4. Results and Discussion
4.1. Effects of Human Body on Signal Transmission
4.2. Simplification of Human Body Model
4.3. Transceiver Electrodes Configuration and Carrier Frequency in HBC
4.3.1. Two-Electrode Transceiver
4.3.2. Single-Electrode Transceiver
4.4. S21 Improvement by Impedance Matching and Exposure Assessment for Human Safety
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks; IEEE Std 802.15.6-2012; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2012; pp. 1–271. [Google Scholar] [CrossRef]
- Ministry of Internal Affairs and Communications: Regulation of the Extremely Low Power Radio Station. Available online: http://www.tele.soumu.go.jp/e/ref/material/rule/index.htm (accessed on 15 April 2021).
- Ministry of Internal Affairs and Communications: Specified Low-Power Radio Station. Available online: http://www.tele.soumu.go.jp/e/adm/system/ml/small/index.htm (accessed on 15 April 2021).
- Jensen, M.A.; Rahmat-Samii, Y. EM Interaction of Handset Antennas and a Human in Personal Communications. Proc. IEEE 1995, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Schwan, H.P.; Foster, K.R. Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water. Biophys. J. 1977, 17, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, T.G. Personal area networks: Near-field intrabody communication. IBM Syst. J. 1996, 35, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Hernández, D.; Callejón-Leblic, A.; Vasić, Ž.L.; Seyedi, M.; Gao, Y.-M. Past results, present trends, and future challenges in intrabody communication. Wirel. Commun. Mob. Comput. 2018, 2018, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Pun, S.H.; Gao, Y.M.; Mak, P.U.; Vai, M.I.; Du, M. Quasi-static modeling of human limb for intra-body communications with experiments. IEEE Trans. Inform. Technol. Biomed. 2011, 15, 870–876. [Google Scholar] [CrossRef]
- Bae, J.; Cho, H.; Song, K.; Lee, H.; Yoo, H.-J. The signal transmission mechanism on the surface of human body for body channel communication. IEEE Trans. Microw. Theory Techn. 2012, 60, 582–593. [Google Scholar] [CrossRef]
- Pereira, M.D.; Alvarez-Botero, G.A.; Sousa, F.R.D. Characterization and modeling of the capacitive HBC channel. IEEE Trans. Instrum. Meas. 2015, 64, 2626–2635. [Google Scholar] [CrossRef]
- Li, M.; Song, Y.; Li, W.; Wang, G.; Bu, T.; Zhao, Y.; Hao, Q. The modeling and simulation of the galvanic coupling intra-body communication via handshake channel. Sensors 2017, 17, 863. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Ng, W.C.; Zhu, H.; Shan, H.; Yuan, J. Equation environment oupling and interference on the electric-field intrabody communication channel. IEEE Trans. Biomed. Eng. 2012, 59, 2051–2059. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Q.; Guo, Y.X.; Wu, W. Investigation and modeling of capacitive human body communication. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Yang, H.; Zhao, B. An investigation on ground electrodes of capacitive coupling human body communication. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 910–919. [Google Scholar] [CrossRef]
- Park, J.; Garudadri, H.; Mercier, P.P. Channel modeling of miniaturized battery-powered capacitive human body communication systems. IEEE Trans. Biomed. Eng. 2017, 64, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Callejon, M.A.; Roa, L.M.; Reina-Tosina, J.; Naranjo-Hernandez, D. Study of attenuation and dispersion through the skin in intrabody communications systems. IEEE Trans. Inform. Technol. Biomed. 2012, 16, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Teshome, A.K.; Kibret, B.; Lai, D.T.H. Galvanically coupled intrabody communications for medical implants: A unified analytic model. IEEE Trans. Antennas Propag. 2016, 64, 2989–3002. [Google Scholar] [CrossRef]
- Wang, H.; Tang, X.; Choy, C.S.; Sobelman, G.E. Cascaded network body channel model for intrabody communication. IEEE J. Biomed. Health Inform. 2016, 20, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Lodi, M.B.; Curreli, N.; Fanti, A.; Cuccu, C.; Pani, D.; Sanginario, A.; Spanu, A.; Ros, P.M.; Crepaldi, M.; Demarchi, D.; et al. A periodic transmission line model for body channel communication. IEEE Access 2020, 8, 160099–160115. [Google Scholar] [CrossRef]
- Fujii, K. Study on the transmission mechanism for wearable device using the human body as a transmission channel. IEICE Trans. Commun. 2005, E88-B, 2401–2410. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.B.; Hwang, J.H.; Hyoung, C.H.; Kim, J.K.; Park, D.G.; Kang, S.W. Effects of Ground Electrode on Signal Transmission of Human Body Communication Using Human Body as Transmission Medium. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 491–494. [Google Scholar]
- Fujii, K.; Takahashi, M.; Ito, K. Electric field distributions of wearable devices using the human body as a transmission channel. IEEE Trans. Antennas Propag. 2007, 55, 2080–2087. [Google Scholar] [CrossRef]
- Hwang, J.H.; Myoung, H.J.; Kang, T.W.; Kim, S.E.; Kim, J.K.; Hyoung, C.H.; Park, H.I.; Lim, I.G.; Kim, J.B.; Kim, K.S.; et al. Effects of Transmitter’s location on the Signal Loss of the Human Body Communication. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar]
- Haga, N.; Saito, K.; Takahashi, M.; Ito, K. Equivalent circuit of intrabody communication channels inducing conduction currents inside the human body. IEEE Trans. Antennas Propag. 2013, 61, 2807–2816. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Nie, Z.; Qin, W.; Pang, Z.; Wang, L. An approach to biometric verification based on human body communication in wearable devices. Sensors 2017, 17, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asogwa, C.; Bay, J.A.; Mclaughlin, P.; Collins, S.; Lai, D. A galvanic intrabody method for assessing fluid flow in unilateral lymphoedema. Electronics 2017, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Asan, N.B.; Penichet, C.P.; Shah, S.R.V.; Noreland, D.; Hassan, E.; Rydberg, A.; Blokhuis, T.J.; Voigt, T.; Augustine, R. Data packet transmission through fat tissue for wireless intrabody networks. IEEE J. Electromagn. RF Microw. Med. Biol. 2017, 1, 43–51. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nishida, Y.; Sasaki, K.; Muramatsu, D.; Koshiji, F. Electromagnetic field analysis of signal transmission path and electrode contact conditions in human body communication. Appl. Sci. 2018, 8, 1539. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Baek, J.; Kim, S.; Jeong, M.; Kim, Y. Touch-based dual-band system combined human body communication and wireless LAN for wearable devices. Electronics 2019, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Ko, J. IB-MAC: Transmission latency-aware MAC for electro-magnetic intra-body communications. Sensors 2019, 19, 341. [Google Scholar] [CrossRef] [Green Version]
- Nishida, Y.; Sasaki, K.; Yamamoto, K.; Muramatsu, D.; Koshiji, F. Equivalent circuit model viewed from receiver side in human body communication. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 746–755. [Google Scholar] [CrossRef]
- Crepaldi, M.; Barcellona, A.; Zini, G.; Ansaldo, A.; Ros, P.M.; Sanginario, A.; Cuccu, C.; Marchi, D.D.; Brayda, L. Live wire—A low-complexity body channel communication system for landmark Identification. IEEE Trans. Emerg. Top. Comput. 2020, 1. [Google Scholar] [CrossRef]
- Vale-Cardoso, A.; Moreira, M.; Coelho, K.K.; Vieira, A.; Santos, A.; Nogueira, M.; Nacif, J.A.M. A low-cost electronic system for human-body communication. Electronics 2020, 9, 1928. [Google Scholar] [CrossRef]
- Muramatsu, D.; Yokoyama, Y.; Sasaki, K. Clarification of Transmission Mechanism in Human Body Communication between Head-Mounted Wearable Devices with Detailed Model. In Proceedings of the International Conference on Electronics Packaging (ICEP), Toyama, Japan, 23–25 April 2014; pp. 740–743. [Google Scholar] [CrossRef]
- Kochkin, S. MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing. Hear. J. 2010, 63, 9. [Google Scholar] [CrossRef]
- Shin, D.; Cho, J.-H. Piezoelectric actuator with frequency characteristics for a middle-ear implant. Sensors 2018, 18, 1694. [Google Scholar] [CrossRef] [Green Version]
- Itturriet, F.P.; Costa, M.H. Perceptually relevant preservation of interaural time differences in binaural hearing aids. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 753–764. [Google Scholar] [CrossRef]
- Byrne, D.; Noble, W. Optimizing sound localization with hearing aids. Trends Amplif. 1998, 3, 51–73. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, F.; Sun, Z.; Weng, Z.; Tang, X.; Jiang, H.; Wang, Z. A smart binaural hearing aid architecture based on a mobile computing platform. Electronics 2019, 8, 811. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R. Miniaturized Antennas for Link between Binaural Hearing Aids. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biologys, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 686–691. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Johansson, A.J. A link loss model for the on-body propagation channel for binaural hearing aids. IEEE Trans. Antennas Propag. 2013, 61, 6180–6190. [Google Scholar] [CrossRef]
- Bresnahan, D.; Li, Y. Investigation of creeping wave propagation around the human head at ISM frequencies. Antennas Wirel. Propag. Lett. 2017, 16, 2767–2770. [Google Scholar] [CrossRef]
- See, T.S.P.; Chen, Z.N. Effects of Human Body on Performance of Wearable PIFAs and RF Transmission. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; pp. 686–689. [Google Scholar] [CrossRef]
- Hachisuka, K.; Takeda, T.; Terauchi, Y.; Sasaki, K.; Hosaka, H.; Itao, K. Hw-01 intra-body digital data transmission for the personal area network. MIPE 2003, 2003, 139–140. [Google Scholar] [CrossRef]
- International Telecommunication Union. Available online: http://www.itu.int/en/pages/default.aspx (accessed on 10 May 2021).
- Nagaoka, T.; Watanabe, S.; Sakurai, K.; Kunieda, E.; Watanabe, S.; Taki, M.; Yamanaka, Y. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys. Med. Biol. 2004, 49, 1–15. [Google Scholar] [CrossRef]
- Conway, G.A.; Cotton, S.L.; Scanlon, W.G. An antennas and propagation approach to improving physical layer performance in wireless body area networks. IEEE J. Select. Areas Commun. 2009, 27, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, D.; Koshiji, F.; Koshiji, K.; Sasaki, K. Homogenous Arm Model in Impedance Analysis of Electrodes for Human Body Communication. In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013; pp. 286–287. [Google Scholar]
- AIST/HQL Database of Human Body Size and Shape. Available online: https://www.airc.aist.go.jp/en/ (accessed on 15 April 2021).
- Muramatsu, D.; Koshiji, F.; Koshiji, K.; Sasaki, K. Input impedance analysis of a human body communication transmitter using a realistic human model and a simplified layered model. Trans. Jpn. Inst. Electron. Packag. 2013, 16, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Hirata, A.; Fujimoto, M.; Asano, T.; Wang, J.; Fujiwara, O.; Shiozawa, T. Correlation between maximum temperature increase and peak SAR with different average schemes and masses. IEEE Trans. Electromagn. Compat. 2006, 48, 569–578. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPAN). In IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements; IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002); Institute of Electrical and Electronics Engineers: New York, NY, USA, 2005; pp. 1–700. [Google Scholar] [CrossRef]
- MIC: Radio Radiation Protection Guidelines for Human Exposureto Electromagnetic Fields. Available online: http://www.tele.soumu.go.jp/ (accessed on 10 May 2021).
Simulation Condition | Re (Zin) (Ω) | Im (Zin) (Ω) | S21 (dB) |
---|---|---|---|
(a) 2.45 GHz WC without body | 69.7 | −8.67 | −22.5 |
(b) 2.45 GHz WC with body | 46.1 | 13.5 | −75.6 |
(c) HBC without body | 418 | −17058 | −112 |
(d) HBC with body | 149 | −109 | −66.0 |
Simulation Model | Re (Zin) (Ω) | Im (Zin) (Ω) | S21 (dB) |
---|---|---|---|
(a) Whole-body human model | 149 | −109 | −66.0 |
(b) Detailed head model | 149 | −109 | −65.9 |
(c) Homogenous head model | 50.9 | −6.74 | −64.8 |
Frequency (MHz) | Re(Zin) (Ω) | Im(Zin) (Ω) | S21 (dB) |
---|---|---|---|
10 | 149 | −109 | −66.0 |
20 | 121 | −78.0 | −64.5 |
30 | 107 | −67.2 | −63.3 |
Frequency (MHz) | Re (Zin) (Ω) | Im (Zin) (Ω) | S21 (dB) |
---|---|---|---|
10 | 171 | −8581 | −85.7 |
20 | 10.0 | −4323 | −81.7 |
30 | 4.45 | −2908 | −80.4 |
Frequency (MHz) | Resistance (Ω) | Inductance (μH) | S21 (dB) |
---|---|---|---|
10 | 149 | 1.724 | −61.7 |
20 | 121 | 0.6205 | −61.4 |
30 | 107 | 0.3567 | −61.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muramatsu, D.; Sasaki, K. Transmission Analysis in Human Body Communication for Head-Mounted Wearable Devices. Electronics 2021, 10, 1213. https://doi.org/10.3390/electronics10101213
Muramatsu D, Sasaki K. Transmission Analysis in Human Body Communication for Head-Mounted Wearable Devices. Electronics. 2021; 10(10):1213. https://doi.org/10.3390/electronics10101213
Chicago/Turabian StyleMuramatsu, Dairoku, and Ken Sasaki. 2021. "Transmission Analysis in Human Body Communication for Head-Mounted Wearable Devices" Electronics 10, no. 10: 1213. https://doi.org/10.3390/electronics10101213
APA StyleMuramatsu, D., & Sasaki, K. (2021). Transmission Analysis in Human Body Communication for Head-Mounted Wearable Devices. Electronics, 10(10), 1213. https://doi.org/10.3390/electronics10101213