Tactile Sensor Data Interpretation for Estimation of Wire Features
Abstract
:1. Introduction
2. Sensor Technology
2.1. Hardware
2.2. Software
3. Normalization with Linearization and Wire Shape Estimation
3.1. Normalization with Linearization
3.2. Wire Shape Estimation
Algorithm 1: Pseudo-code for wire shape estimation |
Input: Taxel normalized values and taxels mechanical coordinates |
Output: a, b and c parameters in Equation (1) |
1: Construct the vector in Equation (2); |
2: Compute the y-coordinate of the 5 centroids by using Equation (3); |
3: Use the centroids to compute a, b and c in Equation (1) via a least squares method; |
4. Wire Diameter Recognition
4.1. Lookup Table
- 1.
- Computing the sum of the normalized values for the 25 taxels of each observation;
- 2.
- Separating the observations according to the finger distance (the gripper maps used, with a distance to the range of , with 0 corresponding to fully open and 255 to fully closed);
- 3.
- Computing the mean value of the sums obtained in step 1 for each group found in step 2.
4.2. Machine Learning
4.3. Validation of Classifiers
5. Experiments
5.1. Normalization
5.2. Shape Estimation
5.3. Wire Diameter Recognition
6. Conclusions and Future Works
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Howe, R.D. Tactile sensing and control of robotic manipulation. J. Adv. Robot. 1994, 8, 245–261. [Google Scholar] [CrossRef]
- De Oliveira, T.E.A.; Cretu, A.M.; da Fonseca, V.P.; Petriu, E.M. Touch sensing for humanoid robots. IEEE Instrum. Meas. Mag. 2015, 18, 13–19. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Mei, D. Flexible Tactile Sensor Array for Slippage and Grooved Surface Recognition in Sliding Movement. Micromachines 2019, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhuang, C.; Nasrollahi, A.; Lu, L.; Haider, M.F.; Chang, F. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach. Sensors 2020, 20, 2830. [Google Scholar] [CrossRef] [PubMed]
- Rosle, M.H.; Wang, Z.; Hirai, S. Geometry Optimisation of a Hall-Effect-Based Soft Fingertip for Estimating Orientation of Thin Rectangular Objects. Sensors 2019, 19, 4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.; Wang, L.; Ghanbari, A.; Vardakastani, V.; Kedgley, A.E.; Gardiner, M.D.; Vincent, T.L.; Culmer, P.R.; Alazmani, A. Design and Evaluation of Magnetic Hall Effect Tactile Sensors for Use in Sensorized Splints. Sensors 2020, 20, 1123. [Google Scholar] [CrossRef] [Green Version]
- Makihata, M.; Muroyama, M.; Tanaka, S.; Nakayama, T.; Nonomura, T.; Esashi, M. Design and Fabrication Technology of Low Profile Tactile Sensor with Digital Interface for Whole Body Robot Skin. Sensors 2018, 18, 2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamali, N.; Sammut, C. Material classification by tactile sensing using surface textures. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2336–2341. [Google Scholar] [CrossRef]
- Bandyopadhyaya, I.; Babu, D.; Kumar, A.; Roychowdhury, J. Tactile sensing based softness classification using machine learning. In Proceedings of the 2014 IEEE International Advance Computing Conference (IACC), Gurgaon, India, 21–22 February 2014; pp. 1231–1236. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, B.; Gu, C.; Yu, P.; Zhang, G.; Fu, X.; Cipriani, C.; Hu, L. Discrimination of Object Curvature Based on a Sparse Tactile Sensor Array. Micromachines 2020, 11, 583. [Google Scholar] [CrossRef]
- Prado da Fonseca, V.; Alves de Oliveira, T.E.; Petriu, E.M. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference. Sensors 2019, 19, 2285. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Zhang, Y.; Fan, S.; Jin, M.; Zong, H.; Liu, H. Model recovery of unknown objects from discrete tactile points. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 1121–1126. [Google Scholar]
- Meier, M.; Schopfer, M.; Haschke, R.; Ritter, H. A Probabilistic Approach to Tactile Shape Reconstruction. IEEE Trans. Robot. 2011, 27, 630–635. [Google Scholar] [CrossRef]
- Schneider, A.; Sturm, J.; Stachniss, C.; Reisert, M.; Burkhardt, H.; Burgard, W. Object identification with tactile sensors using bag-of-features. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 243–248. [Google Scholar]
- Petrovskaya, A.; Khatib, O.; Thrun, S.; Ng, A.Y. Bayesian estimation for autonomous object manipulation based on tactile sensors. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 707–714. [Google Scholar]
- Damian, D.D.; Newton, T.H.; Pfeifer, R.; Okamura, A.M. Artificial Tactile Sensing of Position and Slip Speed by Exploiting Geometrical Features. IEEE/ASME Trans. Mech. 2015, 20, 263–274. [Google Scholar] [CrossRef]
- Stachowsky, M.; Hummel, T.; Moussa, M.; Abdullah, H.A. A Slip Detection and Correction Strategy for Precision Robot Grasping. IEEE/Asme Trans. Mechatron. 2016, 21, 2214–2226. [Google Scholar] [CrossRef]
- Allen, P. Integrating vision and touch for object recognition tasks. Int. Robot. Res. 1988, 7, 15–33. [Google Scholar] [CrossRef]
- Francomano, M.T.; Accoto, D.; Guglielmelli, E. Artificial Sense of Slip—A Review. IEEE Sens. J. 2013, 13, 2489–2498. [Google Scholar] [CrossRef]
- Yousef, H.; Boukallel, M.; Althoefer, K. Tactile sensing for dexterous in-hand manipulation in robotics - A review. Sens. Actuators Phys. 2011, 167, 171–187. [Google Scholar] [CrossRef]
- Kappassov, Z.; Corrales, J.A.; Perdereau, V. Tactile sensing in dexterous robot hands—Review. Rob. Aut. Syst. 2015, 74, 195–220. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, A.; Costanzo, M.; Laudante, G.; Pirozzi, S. Tactile Sensors for Parallel Grippers: Design and Characterization. Sensors 2021, 21, 1915. [Google Scholar] [CrossRef]
- Pirozzi, S.; Natale, C. Tactile-Based Manipulation of Wires For Switchgear Assembly. IEEE/ASME Trans. Mechatron. 2018, 23, 2650–2661. [Google Scholar] [CrossRef]
- Escalera, S.; Pujol, O.; Radeva, P. On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Number of Taxels | 25 | Response Time | <0.01 s |
Sensing Area | mm | Hysteresis Error | ≈5% |
Spatial Resolution | mm | Repeatability Error | ≈3% |
Sampling Frequency | Hz | Sensitivity | V/N |
Output → | 1.5 mm | 2.0 mm | 2.5 mm | 3.0 mm | 3.5 mm | 4.0 mm |
---|---|---|---|---|---|---|
Finger | Sum of for the 25 Taxels | |||||
↓ Distance ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
215 | 0.6168 | 1.0318 | 1.5376 | 2.0584 | 4.1569 | 5.7366 |
216 | 0.7366 | 1.3155 | 2.0428 | 2.5440 | 4.8277 | 6.4678 |
217 | 0.8844 | 1.7548 | 2.5433 | 3.0283 | 5.5081 | 7.2301 |
218 | 0.9518 | 2.2716 | 3.0802 | 3.5735 | 6.2054 | 7.9888 |
219 | 1.1271 | 2.7982 | 3.6801 | 4.1312 | 6.8996 | 8.6168 |
220 | 1.4070 | 3.4291 | 4.3323 | 4.7635 | 7.6136 | 9.3378 |
221 | 1.8602 | 4.0289 | 5.0258 | 5.4277 | 8.2748 | 9.9498 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirillo, A.; Laudante, G.; Pirozzi, S. Tactile Sensor Data Interpretation for Estimation of Wire Features. Electronics 2021, 10, 1458. https://doi.org/10.3390/electronics10121458
Cirillo A, Laudante G, Pirozzi S. Tactile Sensor Data Interpretation for Estimation of Wire Features. Electronics. 2021; 10(12):1458. https://doi.org/10.3390/electronics10121458
Chicago/Turabian StyleCirillo, Andrea, Gianluca Laudante, and Salvatore Pirozzi. 2021. "Tactile Sensor Data Interpretation for Estimation of Wire Features" Electronics 10, no. 12: 1458. https://doi.org/10.3390/electronics10121458
APA StyleCirillo, A., Laudante, G., & Pirozzi, S. (2021). Tactile Sensor Data Interpretation for Estimation of Wire Features. Electronics, 10(12), 1458. https://doi.org/10.3390/electronics10121458