A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology
Abstract
:1. Introduction
2. Overview of GaAs Process and the Modeling of the Active and Passive Devices
2.1. The 250 nm Phemt Technology
2.2. The Model of the Active Devices
2.3. The EM Simulation of the Passive Device
3. The Design Methodology for the SP32T Switch
3.1. The System Design Requirement and Structure Analysis
3.2. Transmission (ABCD) Matrix Design Methodology to Optimize the Insertion and Isolation Loss
3.3. Transmission (ABCD) Matrix Optimization for the SP32T Switch
3.4. ESD Protection and Switch Speed Design for Control Signals
4. Measurement Results
4.1. Chip and Package Design for Testing
4.2. Chip and Package Design for Testing
4.3. Linearity and Switching Speed Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Y.; Boon, C.; Mak, P.; Martins, R. A 0.096-mm2 1-20-GHz triple-path noise-canceling common-gate common-source LNA with dual complementary pMOS-nMOS configuration. IEEE Trans. Microw. Theory Technol. 2020, 68, 144–159. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Y.; Boon, C.C.; Li, C.; Mak, P.-I.; Martins, R.P. A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-Feedback noise-cancelling LNA achieving a flat NF of 3.3 ± 0.45 dB. IEEE Trans. Circ. Syst. II Exp. Briefs 2019, 66, 71–75. [Google Scholar] [CrossRef]
- Djerafi, T.; Fonseca, N.J.G.; Wu, K. Planar Ku-band 4 × 4 Nolen matrix in SIW technology. IEEE Trans. Microw. Theory Technol. 2010, 58, 259–266. [Google Scholar] [CrossRef]
- Cetinoneri, B.; Atesal, Y.A.; Rebeiz, G.M. An 8 × 8 Butler matrix in 0.13 μm CMOS for 5-6-GHz multibeam applications. IEEE Trans. Microw. Theory Technol. 2011, 59, 295–301. [Google Scholar] [CrossRef]
- Bona, M.; Manholm, L.; Starski, J.P.; Svensson, B. Low-loss compact Butler Matrix for a microstrip antenna. IEEE Trans. Microw. Theory Technol. 2020, 50, 2069–2075. [Google Scholar] [CrossRef]
- Vahabisani, N.; Daneshmand, M. Monolithic millimeter-wave MEMS waveguide switch. IEEE Trans. Microw. Theory Technol. 2015, 63, 340–351. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Yen, S.; Mukherjee, T.; Fedder, G.K. Lateral Flexure Contact on CMOS MEMS Electrothermal Metal-Metal Contact Switch by Platinum ALD Sidewall Patterning. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 974–977. [Google Scholar]
- Vahabisani, N.; Daneshmand, M. Realization of a new class of monolithic RF MEMS waveguide switches for millimeter-wave applications. In Proceedings of the IEEE MTT-S International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Daneshmand, M.; Fouladi, S.; Mansour, R.R.; Lisi, M.; Stajcer, T. Thermally actuated latching RF MEMS switch and its characteristics. IEEE Trans. Microw. Theory Technol. 2009, 57, 3229–3238. [Google Scholar] [CrossRef]
- Fedder, G.K.; Howe, R.T.; Liu, T.-J.K.; Quevy, E.P. Technologies for cofabricating MEMS and electronics. Proc. IEEE 2008, 96, 306–322. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chung, V.P.J.; Santhanam, S.; Mukherjee, T.; Fedder, G.K. Sidewall metallization on CMOS MEMS by platinum ALD patterning. J. Microelectromech. Syst. 2020, 29, 978–983. [Google Scholar] [CrossRef]
- Analog Devices, ADGM1004 Datasheet, Analog Devices. Norwood, MA, USA. 2020. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/adgm1004.pdf (accessed on 15 June 2021).
- Menlo Micro, MM5120 Product Berief, Menlo Micro. Irvine, CA, USA. 2020. Available online: https://menlomicro.com/images/general/MM5120_Product_Brief.pdf (accessed on 15 June 2021).
- Singh, T.; Mansour, R.R. Chalcogenide phase change material GeTe based inline RF SPST series and shunt switches. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, MI, USA, 16–18 July 2018; pp. 1–3. [Google Scholar]
- Crunteanu, A.; Mennai, A.; Guines, C.; Passerieux, D.; Blondy, P. Out-of-plane and inline RF switches based on Ge2Sb2Te5 phase-change material. In Proceedings of the IEEE MTT-S International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Hariri, A.; Crunteanu, A.; Guines, C.; Hallepee, C.; Passerieux, D.; Blondy, P. Double-port double-throw (DPDT) switch matrix based on phase change material (PCM). In Proceedings of the 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 479–482. [Google Scholar]
- Bettoumi, I.; Guines, C.; Blondy, P. A Dynamic CAD Model for Phase Change Material (PCM) Switches. In Proceedings of the 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 658–661. [Google Scholar]
- Singh, T.; Mansour, R.R. Investigation into self actuation limitation and current carrying capacity of chalcogenide phase change GeTe-based RF switches. IEEE Trans. Electron Devices 2020, 67, 5717–5722. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Characterization, optimization, and fabrication of phase change material germanium telluride based miniaturized DC–67 GHz RF switches. IEEE Trans. Microw. Theory Technol. 2019, 67, 3237–3250. [Google Scholar] [CrossRef]
- Yamamoto, K.; Moriwaki, T.; Fujii, T.; Otsuji, J.; Miyashita, M.; Miyazaki, Y.; Nishitani, K. A 2.2-V Operation, 2.4-GHz Single-Chip GaAs MMIC Transceiver for Wireless Applications. IEEE J. Solid State Circ. 1999, 34, 502–512. [Google Scholar] [CrossRef]
- Chao, S.-F.; Kuo, C.-C.; Tsai, Z.-M.; Lin, K.-Y.; Wang, H. 40-GHz MMIC SPDT and Multiple-Port Bandpass Filter-Integrated Switches. IEEE Trans. Microw. Theory Technol. 2007, 55, 2691–2699. [Google Scholar] [CrossRef]
- Snowden, C.M. Large-Signal Microwave Characterization of AlGaAs/GaAs HBT’s Based on a Physics-Based Electrothermal Model. IEEE Trans. Microw. Theory Technol. 1997, 45, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Cidronali, A.; Collodi, G.; Santarelli, A.; Vannini, G.; Manes, G. Millimeter-Wave FET Modeling Using On-Wafer Measurements and EM Simulation. IEEE Trans. Microw. Theory Technol. 2002, 50, 425–432. [Google Scholar] [CrossRef]
- Liou, L.L.; Ebel, J.L.; Huang, C.I. Thermal Effects on the Characteristics of AlGaAs/GaAs Heterojunction Bipolar Transistors Using Two-Dimensional Numerical Simulation. IEEE Trans. Electron Device 1993, 40, 35–43. [Google Scholar] [CrossRef]
- Frankel, M.Y.; Pavlidis, D. An Analysis of the Large-Signal Characteristics of AlGaAs/GaAs Heterojunction Bipolar Transistors. IEEE Trans. Microw. Theory Technol. 1992, 40, 465–474. [Google Scholar] [CrossRef]
- Crupi, G.; Xiao, D.; Schreurs, D.P.; Limiti, E.; Caddemi, A.; De Raedt, W.; Germain, M. Accurate Multibias Equivalent-Circuit Extraction for GaN HEMTs. IEEE Trans. Microw. Theory Technol. 2006, 54, 3616–3622. [Google Scholar] [CrossRef]
- Mizutani, H.; Ishikawa, R.; Honjo, K. InGaAs MMIC SPST Switch Based on HPF/LPF Switching Concept with Periodic Structure. IEEE Trans. Microw. Theory Technol. 2016, 64, 2863–2870. [Google Scholar] [CrossRef]
- Wang, X.S.; Wang, X.; Lu, F.; Zhang, C.; Dong, Z.; Wang, L.; Ma, R.; Shi, Z.; Wang, A.; Chang, M.C.F.; et al. Concurrent Design Analysis of High-Linearity SP10T Switch With 8.5 kV ESD Protection. IEEE J. Solid State Circ. 2014, 49, 1927–1941. [Google Scholar] [CrossRef]
- Wang, A.Z.; Feng, H.; Zhan, R.; Xie, H.; Chen, G.; Wu, Q.; Guan, X.; Wang, Z.; Zhang, C. A Review on RF ESD Protection Design. IEEE Trans. Electron Device 2005, 52, 1304–1311. [Google Scholar] [CrossRef]
- Wang, L.; Ma, R.; Wang, A.; Wang, X.; Zhao, B.; Wang, S.X.; Yue, P.; Shi, Z.; Cheng, Y. A Design Technique Overview on Broadband RF ESD Protection Circuit Designs. In Proceedings of the Proc. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 590–593. [Google Scholar]
- Chipengo, U.; Commens, M. A 77 GHz simulation study of roadway infrastructure radar signatures for smart roads. In Proceedings of the 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; pp. 137–140. [Google Scholar]
- Sari, S.; Tulasi Sivakumar, D.; Nagaveni, H.; Karthik, S. DC-6 GHz GaAs MMIC Compact SPDT Switch. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–4. [Google Scholar]
- Tuthill, M. A Switched-Current, Switched-Capacitor Temperature Sensor in 0.6 μm CMOS. IEEE J. Solid State Circ. 1998, 33, 1117–1122. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.P. CMOS T/R Switch Design: Towards Ultra-Wideband and Higher Frequency. IEEE J. Solid State Circ. 2007, 42, 563–570. [Google Scholar] [CrossRef]
- Han, Y.; Carter, K.; Larson, L.; Behzad, A. A low insertion loss, high linearity, T/R switch in 65 nm bulk CMOS for WLAN 802.11g applications. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, 15–17 June 2008; pp. 681–684. [Google Scholar]
Technology Node | Switch Type | Frequency (GHz) | Insert Loss (dB) | Isolation (dB) | P1dB (dBm) | Rise Time (ns) | Fall Time (ns) | ON Time (ns) | OFF Time (ns) | Area (mm2) | |
---|---|---|---|---|---|---|---|---|---|---|---|
[33] | NA | SPDT | 0.612–1.088 | 2.8–2.3 | >41.4 | 17.3–25.4 | NA | NA | NA | NA | NA |
[34] | 250 nm GaAs pHEMT | SPDT | 0.01–6 | <0.9 | >35 | NA | NA | NA | NA | NA | 1.36 × 1.4 |
[35] | 150 nm GaAs pHEMT | SPDT | 1.9–2.6 | <1 | >24.7 | 17.5 | NA | NA | NA | NA | 0.9 × 1.9 |
[36] | InGaAs PHEMT | SPST | 0–6 | <1.6 | >82 | [email protected] GHz | 1.4 | 1.6 | 8.8 | NA | 1.1 × 1.0 |
[37] | 65 nm CMOS | SPDT | 2.35–2.55 | 0.8 | 28 | 29 | NA | NA | NA | NA | 0.2 |
This work | 250 nm GaAs pHEMT | SP32T | 0.5–6 | <2 | >30@6 GHz | 15 | 1 | 1 | 50 | 50 | 3 × 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Wei, J.; Liu, H.; Ma, S.; Chen, Y.; Ren, J. A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology. Electronics 2021, 10, 1482. https://doi.org/10.3390/electronics10121482
Wu T, Wei J, Liu H, Ma S, Chen Y, Ren J. A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology. Electronics. 2021; 10(12):1482. https://doi.org/10.3390/electronics10121482
Chicago/Turabian StyleWu, Tianxiang, Jipeng Wei, Hongquan Liu, Shunli Ma, Yong Chen, and Junyan Ren. 2021. "A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology" Electronics 10, no. 12: 1482. https://doi.org/10.3390/electronics10121482
APA StyleWu, T., Wei, J., Liu, H., Ma, S., Chen, Y., & Ren, J. (2021). A Sub-6G SP32T Single-Chip Switch with Nanosecond Switching Speed for 5G Applications in 0.25 μm GaAs Technology. Electronics, 10(12), 1482. https://doi.org/10.3390/electronics10121482