A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process
Abstract
:1. Introduction
2. InP DHBT Technology
2.1. Parasitic Substrate Mode Suppression
2.2. Equivalent Circuit Model of Capacitor
2.3. Equivalent Circuit Model of Transistor
3. Amplifier Design
4. On-Wafer Measurement Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, D.P.; Stameroff, A.N.; Pham, A. A 1.5–88 GHz 19.5 dBm output power triple stacked HBT InP distributed amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, 4–9 June 2017; pp. 20–23. [Google Scholar]
- Killeen, N.S.; Nguyen, D.P.; Stameroff, A.N.; Pham, A.V.; Hurst, P.J. Design of a Wideband Bandpass Stacked HBT Distributed Amplifier in InP. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Firenze, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Yoon, S.; Lee, I.; Urteaga, M.; Kim, M.; Jeon, S. A Fully-Integrated 40–222 GHz InP HBT Distributed Amplifier. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 460–462. [Google Scholar] [CrossRef]
- Shivan, T.; Hossain, M.; Stoppel, I.D.; Weimann, N.; Schulz, S.; Doerner, R.; Krozer, V.; Heinrich, W. An Ultra-broadband Low-Noise Distributed Amplifier in InP DHBT Technology. In Proceedings of the 2018 48th European Microwave Conference (EuMC), London, UK, 23–27 September 2018; pp. 1209–1212. [Google Scholar]
- Shivan, T.; Hossain, M.; Doerner, R.; Johansen, T.K.; Yacoub, H.; Boppel, S.; Heinrich, W.; Krozer, V. Performance Analysis of a Low-Noise, Highly Linear Distributed Amplifier in 500-nm InP/InGaAs DHBT Technology. IEEE Trans. Microw. Theory Tech. 2019, 67, 5139–5147. [Google Scholar] [CrossRef]
- Shivan, T.; Weimann, N.; Hossain, M.; Stoppel, D.; Boppel, S.; Ostinelli, O.; Doerner, R.; Bolognesi, C.R.; Krozer, V.; Heinrich, W. A Highly Efficient Ultrawideband Traveling-Wave Amplifier in InP DHBT Technology. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1029–1031. [Google Scholar] [CrossRef]
- Griffith, Z.; Urteaga, M.; Rowell, P. A Compact 140-GHz, 150-mW High-Gain Power Amplifier MMIC in 250-nm InP HBT. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 282–284. [Google Scholar] [CrossRef]
- Griffith, Z.; Urteaga, M.; Rowell, P. A 140-GHz 0.25-W PA and a 55-135 GHz 115-135 mW PA, High-Gain, Broadband Power Amplifier MMICs in 250-nm InP HBT. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1245–1248. [Google Scholar]
- Griffith, Z.; Urteaga, M.; Rowell, P.; Tran, L.; Brar, B. 50–250 GHz High-Gain Power Amplifier MMICs in 250-nm InP HBT. In Proceedings of the 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 3–6 November 2019; pp. 1–6. [Google Scholar]
- Wei, C.; Jin, Z.; Su, Y.; Liu, X.; Xu, A.; Qi, M. Composite-Collector InGaAs/InP Double Heterostructure Bipolar Transistors with Current-Gain Cutoff Frequency of 242 GHz. Chin. Phys. Lett. 2009, 26, 038502. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, T. 0.5 μm InP DHBT technology for 100 GHz + mixed signal integrated circuits. J. Infrared Millim. Waves 2017, 36, 167–172. [Google Scholar]
- Niu, B. 0.5 μm InP /InGaAs DHBT for ultra high speed digital integrated circuit. J. Infrared Millim. Waves 2016, 35, 263–266. [Google Scholar]
- Li, O.; Zhang, Y.; Zhang, T.; Wang, L.; Xu, R.; Sun, Y.; Cheng, W.; Wang, Y.; Niu, B. 140 GHz power amplifier based on 0.5 µm composite collector InP DHBT. IEICE Electron. Express 2017, 14, 20170191. [Google Scholar] [CrossRef] [Green Version]
- Yanfei, H.; Weihua, Y.; Yan, S.; Wei, C. Design of Broadband Amplifier Based on InP DHBT. In Proceedings of the 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 29–31 July 2020; pp. 1–3. [Google Scholar]
- Eriksson, K.; Gunnarsson, S.E.; Nilsson, P.; Zirath, H. Suppression of Parasitic Substrate Modes in Multilayer Integrated Circuits. IEEE Trans. Electromagn. Compat. 2015, 57, 591–594. [Google Scholar] [CrossRef]
- Deal, W.R.; Leong, K.; Zamora, A.; Radisic, V.; Mei, X.B. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS), Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar]
- Chen, Y.; Zhang, Y.; Xu, Y.; Sun, Y.; Cheng, W.; Lu, H.; Xiao, F.; Xu, R. Investigation of Terahertz 3D EM Simulation on Device Modeling and A New InP HBT Dispersive Inter-Electrode Impedance Extraction Method. IEEE Access 2018, 6, 45772–45781. [Google Scholar] [CrossRef]
- Iwamoto, M.; Root, D.E.; Scott, J.B.; Cognata, A.; Asbeck, P.M.; Hughes, B.; Avanzo, D.C.D. Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 8–13 June 2003; pp. 635–638. [Google Scholar]
Rbi (Ω) | Re (Ω) | Rc (Ω) | Rbe (Ω) | Cbci (fF) | Rbci (kΩ) | Gm0 (mS) | τ (pS) | Cbe (fF) |
42 | 3 | 42.7 | 67 | 2.4 | 34.4 | 652 | 0.7 | 512 |
Cbexi (fF) | Ccexi (fF) | Cbcxi (fF) | Lexi (pH) | Lbxi (pH) | Lcxi (pH) | Rexi (Ω) | Rbxi (Ω) | Rcxi (Ω) |
4.5 | 24.2 | 15.5 | 10.5 | 9.5 | 11.1 | 0.87 | 1.35 | 0.78 |
Q1 | Q2 | Q3 | Q4 | Q5 | |
---|---|---|---|---|---|
Zs (Ω) | 18.7 + j14.3 | 21.4 + j10.4 | 21.3 + j4.7 | 20.5 + j0.6 | 20.2 + j0.3 |
Zl (Ω) | 21.1 + j32.3 | 33.4 + j29.7 | 33.9 + j30.1 | 33.6 + j30.0 | 33.6 + j30.0 |
Pout (dBm) | −1.39 | 3.65 | 6.38 | 7.07 | 7.2 |
Ref. | Freq. (GHz) | RB (%) | Technology (ft/fmax GHz) | Gain (dB) | Topology /Devices/Stages | PDC (mW) | Psat (dBm) | Chip-Size (mm2) |
---|---|---|---|---|---|---|---|---|
[3] | 40–222 | 138.9 | 250 nm InP HBT (375/650) | 10 | DA × 2 × 4 | 105 | 8.5 | 0.5 × 0.6 |
[4] | 40–185 | 128.9 | 500 nm InP DHBT (350/400) | 10 | DA × 2 × 5 | 96 | 10 | 0.8 × 0.75 |
[5] | DC–170 | 200 | 500 nm InP DHBT (360/490) | 12 | DA × 3 × 5 | 180 | 10 | 1.5 × 0.65 |
[6] | DC–110 | 200 | 500 nm InP DHBT (400/400) | 13 | DA × 2 × 5 | 129 | 11.5 | 1.7 × 0.8 |
[8] | 55–135 | 84.2 | 250 nm InP HBT (350/600) | 27.3 | CE × 2 × 4 | 1420 | 21.4 | 1.86 × 0.64 |
[9] | 115–150 | 26.4 | 250 nm InP HBT (350/600) | 29.5 | CE × 2 × 5 | 1540 | 21.8 | 1.78 × 0.42 |
This work | 56–161 | 96.8 | 500 nm InP DHBT (350/535) | 19.5 | CE × 5 | 33.3 | 5.9 | 1.2 × 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Yu, W.; Yu, Q.; Wang, B.; Sun, Y.; Cheng, W.; Zhou, M. A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics 2021, 10, 1654. https://doi.org/10.3390/electronics10141654
Hou Y, Yu W, Yu Q, Wang B, Sun Y, Cheng W, Zhou M. A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics. 2021; 10(14):1654. https://doi.org/10.3390/electronics10141654
Chicago/Turabian StyleHou, Yanfei, Weihua Yu, Qin Yu, Bowu Wang, Yan Sun, Wei Cheng, and Ming Zhou. 2021. "A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process" Electronics 10, no. 14: 1654. https://doi.org/10.3390/electronics10141654
APA StyleHou, Y., Yu, W., Yu, Q., Wang, B., Sun, Y., Cheng, W., & Zhou, M. (2021). A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics, 10(14), 1654. https://doi.org/10.3390/electronics10141654