Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barlow Directionally Selective Ganglion Cells
2.2. Local Directionally Detective Neurons
2.3. Global Directionally Detective Neurons
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hubel, D.H. Single unit activity in striate cortex of unrestrained cats. J. Physiol. 1959, 148, 226–238. [Google Scholar] [CrossRef]
- Barlow, H.B.; Hill, R.M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 1963, 139, 412. [Google Scholar] [CrossRef] [Green Version]
- Barlow, H.B.; Hill, R.M.; Levick, W.R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 1964, 173, 377–407. [Google Scholar] [CrossRef]
- Oyster, C.W.; Barlow, H.B. Direction-selective units in rabbit retina: Distribution of preferred directions. Science 1967, 155, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Oyster, C.W.; Takahashi, E.; Collewijn, H. Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vis. Res. 1972, 12, 183–193. [Google Scholar] [CrossRef]
- Semm, P. Antidromically activated direction selective ganglion cells of the rabbit. Neurosci. Lett. 1978, 9, 207–211. [Google Scholar] [CrossRef]
- Oyster, C.W.; Simpson, J.I.; Takahashi, E.S.; Soodak, R.E. Retinal ganglion cells projecting to the rabbit accessory optic system. J. Comp. Neurol. 1980, 190, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Mimura, K.; Dräger, U.C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 1975, 160, 269–289. [Google Scholar]
- Jain, V.; Murphy-Baum, B.L.; deRosenroll, G.; Sethuramanujam, S.; Delsey, M.; Delaney, K.R.; Awatramani, G.B. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife 2020, 9, e52949. [Google Scholar] [CrossRef]
- Ran, Y.; Huang, Z.; Baden, T.; Schubert, T.; Baayen, H.; Berens, P.; Franke, K.; Euler, T. Type-specific dendritic integration in mouse retinal ganglion cells. Nat. Commun. 2020, 11, 2101. [Google Scholar] [CrossRef]
- Mimura, K. Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 1972, 80, 409–437. [Google Scholar] [CrossRef]
- Haag, J.; Arenz, A.; Serbe, E.; Gabbiani, F.; Borst, A. Complementary mechanisms create direction selectivity in the fly. eLife 2016, 5, e17421. [Google Scholar] [CrossRef]
- Mauss, A.S.; Vlasits, A.; Borst, A.; Feller, M. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 2017, 40, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Borst, A. A biophysical mechanism for preferred direction enhancement in fly motion vision. PLoS Comput. Biol. 2018, 14, e1006240. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.H.; Stone, J. Properties of ganglion cells in the visual streak of the cat’s retina. J. Comp. Neurol. 1976, 169, 99–125. [Google Scholar] [CrossRef]
- Nelson, R.; Famiglietti, E.V., Jr.; Kolb, H. Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. J. Neurophysiol. 1978, 41, 472–483. [Google Scholar] [CrossRef]
- Cleland, B.G.; Levick, W.R. Properties of rarely encountered types of ganglion cells in the cat’s retina and on overall classification. J. Physiol. 1974, 240, 457–492. [Google Scholar] [CrossRef]
- Levick, W.R.; Thibos, L.N.; Morstyn, R. Retinal ganglion cells and optic decussation of white cats. Vis. Res. 1980, 20, 1001–1006. [Google Scholar] [CrossRef]
- Vaney, D.I. The mosaic of amacrine cells in the mammalian retina. Prog. Retin. Res. 1990, 9, 49–100. [Google Scholar] [CrossRef]
- Brecha, N.; Johnson, D.; Peichl, L.; Wässle, H. Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. Proc. Natl. Acad. Sci. USA 1988, 85, 6187–6191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Masland, R.H. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 1997, 389, 378–382. [Google Scholar] [CrossRef]
- Kim, T.; Kerschensteiner, D. Inhibitory control of feature selectivity in an object motion sensitive circuit of the retina. Cell Rep. 2017, 19, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Fried, S.I.; Münch, T.A.; Werblin, F.S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 2002, 420, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Vaney, D.I.; Sivyer, B.; Taylor, W.R. Direction selectivity in the retina: Symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 2012, 13, 194–208. [Google Scholar] [CrossRef]
- Morrie, R.D.; Feller, M.B. An asymmetric increase in inhibitory synapse number underlies the development of a direction selective circuit in the retina. J. Neurosci. 2015, 35, 9281–9286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, L.; Sethuramanujam, S.; deRosenroll, G.; Jain, V.; Awatramani, G.B. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019, 8, e42392. [Google Scholar] [CrossRef] [PubMed]
- Krieger, B.; Qiao, M.; Rousso, D.L.; Sanes, J.R.; Meister, M. Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS ONE 2017, 12, e0180091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wu, Q.; Zhang, Y. Early visual motion experience shapes the gap junction connections among direction selective ganglion cell. PLoS Biol. 2020, 18, e3000692. [Google Scholar] [CrossRef]
- Chen, Q.; Smith, R.G.; Huang, X.; Wei, W. Preserving inhibition with a disinhibitory microcircuit in the retina. eLife 2020, 9, e62618. [Google Scholar] [CrossRef]
- Rasmussen, R.N.; Matsumoto, A.; Arvin, S.; Yonehara, K. Binocular integration of retinal motion information underlies optic flow processing by the cortex. Curr. Biol. 2021, 31, 1165–1174. [Google Scholar] [CrossRef]
- Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285. [Google Scholar]
- Taylor, W.R.; He, S.; Levick, W.R.; Vaney, D.I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 2000, 289, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
NOISE | 0% | 50% | 100% | 150% | 200% | 300% |
NOISE | NOISE | NOISE | NOISE | NOISE | NOISE | |
CNN | 99.35% | 88.2% | 78.125% | 70.475% | 65.525% | 55.775% |
Proposed Method | 98.275% | 94.25% | 87.725% | 82.45% | 78.075% | 70.125% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Todo, Y.; Tang, Z. Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells. Electronics 2021, 10, 1663. https://doi.org/10.3390/electronics10141663
Han M, Todo Y, Tang Z. Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells. Electronics. 2021; 10(14):1663. https://doi.org/10.3390/electronics10141663
Chicago/Turabian StyleHan, Mianzhe, Yuki Todo, and Zheng Tang. 2021. "Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells" Electronics 10, no. 14: 1663. https://doi.org/10.3390/electronics10141663
APA StyleHan, M., Todo, Y., & Tang, Z. (2021). Mechanism of Motion Direction Detection Based on Barlow’s Retina Inhibitory Scheme in Direction-Selective Ganglion Cells. Electronics, 10(14), 1663. https://doi.org/10.3390/electronics10141663