Compact and Simple High-Efficient Dual-Band RF-DC Rectifier for Wireless Electromagnetic Energy Harvesting
Abstract
:1. Introduction
- Compact, low-profile, multi-band, omnidirectional, and highly efficient antenna design.
- The matching circuit and rectifier should be compact and low profile and achieve high RF–dc conversion efficiency at the desired frequency bands.
2. Rectifier Circuit Architecture
2.1. Single-Series Diode
2.2. Impedance Matching Circuit
3. Simulation and Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thierry, T.; Ludivine, F.; Laurent, O.; Florent, T.; Valérie, V. RF energy harvesting and remote powering at 900 MHz and 2.4 GHz. In Proceedings of the 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, France, 7–10 December 2014; pp. 818–821. [Google Scholar]
- Chandrasekaran, K.T.; Agarwal, K.; Karim, M.F. Compact Dual-Band Metamaterial-Based High-Efficiency Rectenna: An Application for Ambient Electromagnetic Energy Harvesting. IEEE Antennas Propag. Mag. 2020, 62, 18–29. [Google Scholar] [CrossRef]
- Valenta, C.R.; Durgin, G.D. Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar]
- Wang, X.; Mortazawi, A. Rectifier array with adaptive power distribution for wide dynamic range RF-DC conversion. IEEE Trans. Microw. Theory Techn. 2019, 67, 392–401. [Google Scholar] [CrossRef]
- Rotenberg, S.A.; Podilchak, S.K.; Lee, J. Efficient rectifier for wireless power transmission systems. IEEE Trans. Microw. Theory Techn. 2020, 68, 1921–1932. [Google Scholar] [CrossRef]
- Kuhn, V.; Lahuec, C.; Seguin, F.; Person, C. A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Trans. Microw. Theory Tech. 2015, 63, 1768–1778. [Google Scholar] [CrossRef]
- Lu, J.; Yang, X.; Mei, H.; Tan, C. A four-band rectifier with adaptive power for electromagnetic energy harvesting. IEEE Microw. Wireless Compon. Lett. 2016, 26, 819–821. [Google Scholar] [CrossRef]
- Mansour, M.; Kanaya, H. Compact and Broadband RF Rectifier with 1.5 Octave Bandwidth Based on a Simple Pair of L-Section Matching Network. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 335–337. [Google Scholar] [CrossRef]
- Mansour, M.; Polozec, X.L.; Kanaya, H. Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications. Sensors 2019, 19, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorcioni, S.; Larcher, L.; Bertacchini, A. A reconfigurable differential CMOS RF energy scavenger with 60% peak efficiency and sensitivity. IEEE Microw. Wireless Compon. Lett. 2013, 23, 155–157. [Google Scholar] [CrossRef]
- Niotaki, K.; Georgiadis, A.; Collado, A. Dual-band rectifier based on resistance compression networks. IEEE MTT-S Int. Dig. 2014, 32, 1–3. [Google Scholar]
- Kanaya, H.; Tsukamoto, S.; Hirabaru, T.; Kanemoto, D.; Pokharel, R.; Yoshida, K. Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 164–166. [Google Scholar] [CrossRef]
- Mansour, M.; Kanaya, H. Compact RF rectifier circuit for ambient energy harvesting. In Proceedings of the IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, Korea, 30 August–1 September 2017; pp. 220–222. [Google Scholar]
- Mansour, M.; Yamamoto, S.; Kanaya, H. Reconfigurable Multistage RF Rectifier Topology for 900 MHz ISM Energy-Harvesting Applications. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1181–1184. [Google Scholar] [CrossRef]
- Mansour, M.; Kanaya, H. Efficiency—Enhancement of 2.45 GHz Energy Harvesting Circuit Using Integrated CPW—MS Structure at Low RF Input Power. IEICE Trans. Electron. 2019, E102-C, 399–407. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Guo, Y. Enhanced Dual-Band Ambient RF Energy Harvesting with Ultra-Wide Power Range. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 630–632. [Google Scholar] [CrossRef]
- Li, C.; Yu, M.; Lin, H. A Compact 0.9-/2.6-GHz Dual-Band RF Energy Harvester Using SiP Technique. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 666–668. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, X. High-Efficiency Single- and Dual-Band Rectifiers Using a Complex Impedance Compression Network for Wireless Power Transfer. IEEE Trans. Ind. Electron. 2018, 65, 5012–5022. [Google Scholar] [CrossRef]
- Mattsson, M.; Kolitsidas, C.; Jonsson, B. Dual-band dual-polarized full-wave rectenna based on differential field sampling. IEEE Antennas Wireless Propag. Lett. 2018, 17, 956–959. [Google Scholar] [CrossRef]
- Liu, J.; Huang, M.; Du, Z. Design of Compact Dual-Band RF Rectifiers for Wireless Power Transfer and Energy Harvesting. IEEE Access 2020, 8, 184901–184908. [Google Scholar] [CrossRef]
- Yoo, T.; Chang, K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microwave Theory Tech. 1992, 40, 1259–1266. [Google Scholar] [CrossRef]
- Khemar, A.; Kacha, A.; Takhedmit, H.; Abib, G. Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments. IET Microw. Antennas Propag. 2018, 12, 49–55. [Google Scholar] [CrossRef]
[16] | [17] | [22] | [18] | [19] | [20] | This Work | |
---|---|---|---|---|---|---|---|
Technology | Avago 2850 | CMOS 0.18um | SMS7630 | HSMS 286F | HSMS2850 | SMS 7630 | SMS 7630 |
V@dBm | 6.2@20 | 1.3@-15 | 0.3@-7 | N/A | N/A | 1@0 | 2.66@5 |
GHz | 0.9, 1.8 | 0.9, 2.6 | GSM1800, UMTS-1 | 2.45, 5.8 | 2.4, 5.5 | 0.915, 2.45 | ISM 0.92, 2.4 |
2.5 | 500 | 1.5 | 0.36 | 15 | 2.5 | 4.7 | |
@dBm | 30@-15 to 20 | 37.5@13 | 38@-9 | 72@18 | 38@0 | 69@-1 | 65@0 |
Size | N/A | 11.6 mm | 104 mm | 1542 mm | 1750 mm | 1880 mm | 156 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, M.M.; Torigoe, S.; Yamamoto, S.; Kanaya, H. Compact and Simple High-Efficient Dual-Band RF-DC Rectifier for Wireless Electromagnetic Energy Harvesting. Electronics 2021, 10, 1764. https://doi.org/10.3390/electronics10151764
Mansour MM, Torigoe S, Yamamoto S, Kanaya H. Compact and Simple High-Efficient Dual-Band RF-DC Rectifier for Wireless Electromagnetic Energy Harvesting. Electronics. 2021; 10(15):1764. https://doi.org/10.3390/electronics10151764
Chicago/Turabian StyleMansour, Mohamed M., Shota Torigoe, Shuya Yamamoto, and Haruichi Kanaya. 2021. "Compact and Simple High-Efficient Dual-Band RF-DC Rectifier for Wireless Electromagnetic Energy Harvesting" Electronics 10, no. 15: 1764. https://doi.org/10.3390/electronics10151764
APA StyleMansour, M. M., Torigoe, S., Yamamoto, S., & Kanaya, H. (2021). Compact and Simple High-Efficient Dual-Band RF-DC Rectifier for Wireless Electromagnetic Energy Harvesting. Electronics, 10(15), 1764. https://doi.org/10.3390/electronics10151764