A Novel Metaheuristic Moss-Rose-Inspired Algorithm with Engineering Applications
Abstract
:1. Introduction
2. Moss Rose Optimization Algorithm
2.1. Inspiration
2.2. Mathematical Model
- Create random variables that represent the flowering diameters:
- Generate the flowering age parameter, which depends on the current diameter and the maximum diameter that the flower will reach. The equation for the is
- Generate the phytochrome parameter, which depends on the max flowering diameter, the number of hours the flowers are open, a random time in the morning and the minimum flowering diameter:
- Calculate the new fd according to the following equation:
3. Computational Results of Benchmark Functions
- (a)
- Unimodal functions for benchmarking;
- (b)
- Functions for multimodal benchmarks.
4. Engineering Optimization Applications
4.1. Smart Antennas with Anti-Jamming
- Case 1:
- Case 2:
- Case 3:
4.2. Narrowband Microstrip Patch Antenna Design
- Specify the center frequency and choose a permittivity () and the thickness of the substrate (h):
- Find the patch width (Wp) using
- Calculate the effective dielectric constant using the following equation:
- Calculate the extended length ():
- Calculate the patch length (Lp) using the following equation:
- Find the notch width using the following equation:
- Calculate the matching impedance Zo as follows:
5. Conclusions
- Generate random variables.
- Identify the values of the variables that produced the best solution to the calculated fitness function.
- Generate a new variable representing the lifetime of the variable.
- Generating a second variable that represents the extent of the influence of natural factors upon updating the variable data.
- Update the variables and compare the results with the previous results to obtain convergence toward a better outcome.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, X.-S. Nature-Inspired Optimization Algorithms, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 1992. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE CNN’95 International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mehrabian, A.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. In Ecological Informatics; Elsevier: Amsterdam, The Netherlands, 2006; pp. 355–366. [Google Scholar]
- Yang, X.-S. Firefly Algorithms for Multimodal Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Yang, X.-S. Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm, Nature-Inspired Cooperative Strategies for Optimization (NICSO); Springer: Cham, Switzerland, 2010; Volume 284, pp. 65–74. [Google Scholar]
- Yang, X.-S. Flower Pollination Algorithm for Global Optimization Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2012; pp. 240–249. [Google Scholar]
- Hao, Z.; Yunlong, Z.; Hanning, C. Root Growth Model: A Novel Approach to Numerical Function Optimization and Simulation of Plant Root System; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Seyedali, M.; Andrew, L. The Whale Optimization Algorithm Advances in Engineering Software; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Nancy, G.; Jyoti, S.; Kamaljit, S. Bhatia, Design Optimization of CPW-Fed Microstrip Patch Antenna Using Constrained ABFO Algorithm; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Mohit, J.; Vijander, S.; Asha, R. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. In ScienceDirect. Swarm and Evolutionary Computation; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ali, R.S.; Alnahwi, F.M.; Abdulkareem, S.A. A modified camel travelling behaviour algorithm for engineering applications. Aust. J. Electr. Electron. Eng. 2019, 16, 176–186. [Google Scholar] [CrossRef]
- Sattar, D.; Salim, R. A smart metaheuristic algorithm for solving engineering problems. Eng. Comput. 2020, 1–29. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Raven, P.H.; Johnson, G.B.; Mason, K.A.; Losos, J.B.; Susan, R. Singer Biology, 11th ed.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Mizoguchi, T. August Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. Plant Cell 2005, 17, 2255–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global Optimization problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150–194. [Google Scholar]
- Kashif, H.; Mohd, N.; Mohd, S.; Shi, C.; Rashid, N. Common Benchmark Functions for Metaheuristic Evaluation: A Review. Int. J. Inform. Vis. 2017, 1, 218–223. [Google Scholar]
- Almoataz, Y.A.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Int. J. Eng. Sci. Technol. 2017, 20, 391–402. [Google Scholar]
- Godara, L.C. Smart Antennas; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Constantine, A. Balanis Antenna Theory Analysis and Design; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Muhammad, A.A.A.; Norhudah, S.; Tien, H. Chua Microstrip antenna design with partial ground at frequencies above 20 GHz for 5G telecommunication systems. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 1466–1473. [Google Scholar]
Decision Variable | → | Moss Rose’s Flowering in a Day |
---|---|---|
Initial solution | → | Randomly generated lighting of a moss rose |
Old solution | → | Old flower diameter of a moss rose |
New solution | → | New flowering of a moss rose |
Best solution | → | Best flower diameter of a moss rose |
Objective function | → | Florigen amount, which depends on the light (phytochrome tincture) and biological clock (red photon spectrum) |
Process of generating a new solution | → | Flowering mechanisms of a moss rose |
Type | Name | Specifications | Search Range | Global Minimum at |
---|---|---|---|---|
Unimodal | Acklay2 Function | Continuous, differentiable, non-separable, non-scalable | −32 ≤ xi ≤ 32. | f(x∗) = −200 at x∗ = (0, 0) |
Beale Function | Continuous, differentiable, non-separable, non-scalable | −4.5 ≤ xi ≤ 4.5 | f(x∗) = 0 at x∗ = (3, 0.5) | |
Dixon and Price Function | Continuous, differentiable, non-separable, scalable | −10 ≤ xi ≤ 10 | f(x∗) = 0 at x∗ = (2 (2i–2/2i)) | |
Leon Function | Continuous, differentiable, non-separable, non-scalable | −1.2 ≤ xi ≤ 1.2 | f(x∗) = 0 at x∗ = (1, 1), | |
Matyas Function | Continuous, differentiable, non-separable, non-scalable | −10 ≤ xi ≤ 10 | f(x∗) = 0 at x∗ = (0, 0) | |
Powell Sum Function | Continuous, differentiable, separable, scalable | −1 ≤ xi ≤ 1 | f(x∗) = 0 at x∗ = (0, 0) | |
Elliptic Function | Continuous, differentiable, non-separable, non-scalable | −100 ≤ xi ≤ 100 | f(x∗) = 0 at x∗ = (0, 0) | |
Rosenbrock Function | Continuous, differentiable, non-separable, scalable | −30 ≤ xi ≤ 30 | f(x∗) = 0 at x∗ = (1, …, 1) | |
Schwefel 2.22 Function | Continuous, differentiable, non-separable, scalable | −100 ≤ xi ≤ 100 | f(x∗) = 0 at x∗ = (0, 0) | |
Step 2 Function | Discontinuous, non-differentiable, separable, scalable | −100 ≤ xi ≤ 100 | f(x∗) = 0 at x∗ = (0.5, …, 0.5) | |
Sum Square Function | Continuous, differentiable, non-separable, non-scalable | −10 ≤ xi ≤ 10 | f(x∗) = 0 at x∗ = (0, 0) | |
Multimodal | Colville Function | Continuous, differentiable, non-separable, non-scalable | −10 ≤ xi ≤ 10 | f(x∗) = 0 at x∗ = (1, …, 1) |
Easom Function | Continuous, differentiable, separable, non-scalable | −100 ≤ xi ≤ 100 | f(x∗) = −1 at x∗ = (π, …, π) | |
Quartic Function | Continuous, differentiable, separable, scalable | −1.28 ≤ xi ≤ 1.28 | f(x∗) = 0 at x∗ = (0, …, 0) | |
Quartic with Noise Function | Continuous, differentiable, separable, scalable | −1.28 ≤ xi ≤ 1.28 | f(x∗) = 0 at x∗ = (0, …, 0) | |
Schwefel 2.36 Function | Continuous, differentiable, separable, scalable | 0 ≤ xi ≤ 500 | f(x∗) = −3456 at x∗ = (12,…, 12) | |
Griewank Function | Continuous, differentiable, non-separable, scalable | −100 ≤ xi ≤ 100 | f(x∗) = 0 at x∗ = (0, …, 0) | |
Schaffer 6 Function | Continuous, differentiable, non-separable, scalable | −100 ≤ xi ≤ 100 | f(x∗) = 0 at x∗ = (0, …, 0) |
Algorithms | Parameters | Value |
---|---|---|
MROA | Number of rose flowers for each plant | 30 |
Plant population | 50 | |
Maximum number of iterations | 5000 | |
Red photon wavelength | 660 nm | |
Maximum flowering diameter | 4 | |
Minimum flowering diameter | 0.5 | |
CSA | Number of steps for each flight | 30 |
Flock population | 50 | |
Awareness probability | 0.1 | |
Flight length (fl) | 2 | |
Maximum number of iterations | 5000 | |
MCA | Number of decision variables | 30 |
Camel caravan population | 50 | |
Maximum number of iterations | 5000 | |
Visibility | 0.1 | |
Minimum temperature | 30° | |
Maximum temperature | 60° | |
PSO | Number of decision variables | 30 |
Population | 50 | |
Maximum number of iterations | 5000 | |
Cognitive constant (c1) | 1 | |
Social constant (c2) | 1 | |
Inertia weight | 0.4–0.9 |
Function | Results | MROA | PSO | MCA | CSA |
---|---|---|---|---|---|
Acklay2 | Min. Value | −200 | −199.42 | −198.34 | −200.00 |
Mean | −200 | −194.2915 | −194.8375 | −199.9995 | |
St. Dev. | 0 | 2.991608043 | 2.797878661 | 0.002236068 | |
Rank | 1 | 3 | 4 | 2 | |
Beale | Min. Value | 3.2471 × 10−15 | 0 | 0.00012672 | 2.548 × 10−17 |
Mean | 6.0773 × 10−5 | 0.049739907 | 0.097696486 | 6.37883 × 10−13 | |
St. Dev. | 0.000177395 | 0.100935338 | 0.086289362 | 1.89474 × 10−12 | |
Rank | 2 | 3 | 4 | 1 | |
Dixon & Price | Min. Value | 0.018996 | 0.022127 | 0.00049427 | 0.019022 |
Mean | 0.1036305 | 0.20409175 | 0.148765864 | 0.1661664 | |
St. Dev. | 0.08940493 | 0.170401316 | 0.136410879 | 0.13953285 | |
Rank | 1 | 4 | 2 | 3 | |
Leon | Min. Value | 2.3882 × 10−17 | 2.1952 × 10−16 | 2.4476 × 10−11 | 7.8064 × 10−11 |
Mean | 1.55727 × 10−9 | 0.008226761 | 1.30748 × 10−9 | 1.89626 × 10−8 | |
St. Dev. | 3.75185 × 10−9 | 0.021144602 | 1.60812 × 10−9 | 3.18738 × 10−8 | |
Rank | 2 | 4 | 1 | 3 | |
Matyas | Min. Value | 3.6864 × 10−17 | 5.5254 × 10−18 | 0.00032757 | 1.2634 × 10−10 |
Mean | 3.50209 × 10−10 | 0.000349969 | 0.005781294 | 1.5075 × 10−9 | |
St. Dev. | 1.05425 × 10−9 | 0.001343955 | 0.004856965 | 1.85197 × 10−9 | |
Rank | 1 | 3 | 4 | 2 | |
Powell Sum | Min. Value | 2.6923 × 10−116 | 4.0765 × 10−43 | 5.1255 × 10−82 | 4.0934 × 10−20 |
Mean | 3.38865 × 10−31 | 9.01383 × 10−7 | 0.012883587 | 4.14734 × 10−16 | |
St. Dev. | 1.51545 × 10−30 | 3.95512 × 10−6 | 0.057616743 | 1.82849 × 10−15 | |
Rank | 1 | 3 | 4 | 2 | |
Elliptic | Min. Value | 1.01 × 10−8 | 0.000024538 | 0.000096338 | 3.26000 × 10−6 |
Mean | 1.11779 × 10−6 | 0.001778024 | 0.045285091 | 3.43628 × 10−6 | |
St. Dev. | 1.61468 × 10−6 | 0.004665153 | 0.078707248 | 3.52554 × 10−5 | |
Rank | 1 | 3 | 4 | 2 | |
Rosenbrock | Min. Value | 8.6376 × 10−14 | 0 | −79367000 | −29.999 |
Mean | 5.12256 × 10−6 | 0.000824868 | −80249600 | 3 | |
St. Dev. | 1.60557 × 10−5 | 0.003229872 | 697280.5371 | 30.62496402 | |
Rank | 1 | 2 | 4 | 3 | |
Schwefel 2.22 | Min. Value | 2.46 × 10−8 | 0 | 0.00084192 | 5.6813 × 10−7 |
Mean | 8.25162 × 10−6 | 0.0740245 | 0.007106103 | −3.32486 × 10−7 | |
St. Dev. | 1.01709 × 10−5 | 0.186976099 | 0.008900305 | 6.07854 × 10−6 | |
Rank | 2 | 4 | 3 | 1 | |
Step 2 | Min. Value | 1.9125 × 10−14 | 0 | 0.086092 | 0 |
Mean | 0.00191227 | 0.053905812 | 0.7723646 | 0.182425969 | |
St. Dev. | 0.008507456 | 0.241070298 | 0.592366856 | 0.292870893 | |
Rank | 1 | 2 | 4 | 3 | |
Sum Square | Min. Value | 9.6547 × 10−21 | 0 | 4.9192 × 10−6 | 2.8783 × 10−9 |
Mean | 3.75465 × 10−10 | 0.0072807 | 6.51515 × 10−5 | 0.014581727 | |
St. Dev. | 1.18746 × 10−9 | 0.022974547 | 0.000121492 | 0.030715494 | |
Rank | 1 | 3 | 2 | 4 | |
Colville | Min. Value | 1.9816 × 10−7 | 0.000019144 | 10.403 | 0.000060625 |
Mean | 0.00990933 | 0.112682992 | 54.9052 | 0.064946773 | |
St. Dev. | 0.013830272 | 0.191159812 | 31.80264295 | 0.164085831 | |
Rank | 1 | 3 | 4 | 2 | |
Easom | Min. Value | −1 | −1 | −0.34376 | −1 |
Mean | −0.9999945 | −0.937501 | −0.01718949 | −0.99984 | |
St. Dev. | 1.70062 × 10−05 | 0.130961483 | 0.076866722 | 0.000493335 | |
Rank | 1 | 3 | 4 | 2 | |
Quartic | Min. Value | 0 | 0.00094364 | 5.0625 × 10−24 | 1.7000000 × 10−20 |
Mean | 1.0326 × 10−141 | 0.006156197 | 5.59873 × 10−10 | 1.81534 × 10−19 | |
St. Dev. | 4.6177 × 10−141 | 0.006189817 | 2.00435 × 10−9 | 7.70156 × 10−19 | |
Rank | 1 | 4 | 3 | 2 | |
Quartic with Noise | Min. Value | 6.6502 × 10−6 | 0.000086509 | 0.00024593 | 0.0068233 |
Mean | 0.000151943 | 0.002846577 | 0.007795547 | 0.010313575 | |
St. Dev. | 0.000129066 | 0.011295313 | 0.006333955 | 0.026795825 | |
Rank | 1 | 2 | 3 | 4 | |
Schwefel 2.36 | Min. Value | −3456 | −3456 | −3435.2 | −3452.9 |
Mean | −3208.137 | −1.3532 × 10+11 | −3051.015 | −3854443.57 | |
St. Dev. | 863.9120062 | 3.54737 × 10+11 | 424.5019339 | 15039861.74 | |
Rank | 1 | 4 | 2 | 3 | |
Griewank | Min. Value | 0 | 0 | −0.080845 | −1.9164 × 10−9 |
Mean | 7.00056 × 10−10 | 0.003452655 | −0.09689335 | 1.17946 × 10−9 | |
St. Dev. | 1.66136 × 10−09 | 0.009206785 | 0.19265963 | 4.96471 × 10−9 | |
Rank | 1 | 3 | 4 | 2 | |
Schaffer 6 | Min. Value | 1.0991 × 10−14 | 0 | 0.010537 | −3.9162 × 10−10 |
Mean | 5.68756 × 10−10 | 0.015566735 | 0.04689305 | −6.08983 × 10−10 | |
St. Dev. | 2.05703 × 10−9 | 0.050868454 | 0.02463849 | 2.36199 × 10−9 | |
Rank | 1 | 3 | 4 | 2 |
|wopt| Case 1 | |wopt| Case 2 | |wopt| Case 3 |
---|---|---|
0.3398 | 0.2494 | 0.2824 |
0.4334 | 0.6775 | 0.5368 |
0.2699 | 0.4279 | 0.3438 |
0.5270 | 0.1571 | 0.3622 |
0.3145 | 0.1670 | 0.3168 |
0.2633 | 0.3353 | 0.1845 |
0.6227 | 0.1745 | 0.1952 |
0.3644 | 0.4673 | 0.3178 |
0.2383 | 0.5486 | 0.5901 |
0.1947 | 0.2801 | 0.4896 |
Algorithm | MROA | CSA | MCA | PSO |
---|---|---|---|---|
Ave. time | 0.4039 | 0.8815 | 0.4452 | 1.0504 |
Rank | 1 | 3 | 2 | 4 |
Dimension | MROA | CSA | MCA | PSO |
Wp | 38.3935 | 10.1 | 26.0 | 40.1 |
Lp | 29.4 | 10.0 | 32.6 | 30.0 |
Fi | 9.0442 | 3.0 | 9.9 | 9.4 |
Wf | 3.3353 | 1.2 | 3.4 | 3.2 |
Parameter | MROA | CSA | MCA | PSO |
S_Parameter | −34.041775 | −0.23977709 | −2.4879888 | −5.5074249 |
VSWR | 1.0405184 | 72.454306 | 3.2592233 | 7.0299327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hathal, H.M.; Ali, R.S.; Abdullah, A.S. A Novel Metaheuristic Moss-Rose-Inspired Algorithm with Engineering Applications. Electronics 2021, 10, 1877. https://doi.org/10.3390/electronics10161877
Hathal HM, Ali RS, Abdullah AS. A Novel Metaheuristic Moss-Rose-Inspired Algorithm with Engineering Applications. Electronics. 2021; 10(16):1877. https://doi.org/10.3390/electronics10161877
Chicago/Turabian StyleHathal, Hussein M., Ramzy S. Ali, and Abdulkareem S. Abdullah. 2021. "A Novel Metaheuristic Moss-Rose-Inspired Algorithm with Engineering Applications" Electronics 10, no. 16: 1877. https://doi.org/10.3390/electronics10161877
APA StyleHathal, H. M., Ali, R. S., & Abdullah, A. S. (2021). A Novel Metaheuristic Moss-Rose-Inspired Algorithm with Engineering Applications. Electronics, 10(16), 1877. https://doi.org/10.3390/electronics10161877