Progressive Convolutional Neural Network for Incremental Learning
Abstract
:1. Introduction
2. Related Work
- For the first time, we experimented with a progressive neural network for incrementally learning convolutional network-based image classifiers and presented meaningful results.
- We show that the progressively learned network borrows useful information from the previously learned network to discriminate between the old and new classes, even without access to the old data, and outperforms some of the learning-without-forgetting techniques.
- By extensively experimenting with two different ResNet architectures, we provide an analysis on the trade-offs of the performance, speed and GPU resource utilization, for the progressive neural network architectures.
3. Proposed Method
4. Experiments and Analysis
4.1. Dataset
4.2. Implementation Details
4.3. Results
4.3.1. Accuracy
4.3.2. Overhead (Training Time and Memory Utilization)
4.3.3. Comparison with the State-of-the-Art Techniques
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.; Chen, Y.-J.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; Fu, Y. Large Scale Incremental Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 374–382. [Google Scholar]
- Goodfellow, I.J.; Mirza, M.; Da, X.; Courville, A.C.; Bengio, Y. An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks. arXiv 2014, arXiv:1312.6211. [Google Scholar]
- Jung, H.; Ju, J.; Jung, M.; Kim, J. Less-forgetful Learning for Domain Expansion in Deep Neural Networks. arXiv 2018, arXiv:1711.05959v1. [Google Scholar]
- Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Jung, H.; Ju, J.; Jung, M.; Kim, J. Less-forgetting Learning in Deep Neural Networks. arXiv 2016, arXiv:1607.00122. [Google Scholar]
- Lampert, C.H.; Nickisch, H.; Harmeling, S. Attribute-Based Classification for Zero-Shot Visual Object Categorization. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Guo, Y. Progressive Ensemble Networks for Zero-Shot Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11720–11728. [Google Scholar]
- Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual Learning with Deep Generative Replay. arXiv 2017, arXiv:1705.08690. [Google Scholar]
- Venkatesan, R.; Venkateswara, H.; Panchanathan, S.; Li, B. A Strategy for an Uncompromising Incremental Learner. arXiv 2017, arXiv:1705.00744. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Castro, F.M.; Marín-Jiménez, M.J.; Mata, N.G.; Schmid, C.; Karteek, A. End-to-End Incremental Learning. arXiv 2018, arXiv:1807.09536. [Google Scholar]
- Rebuffi, S.-A.; Kolesnikov, A.I.; Sperl, G.; Lampert, C.H. iCaRL: Incremental Classifier and Representation Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5533–5542. [Google Scholar]
- Shmelkov, K.; Schmid, C.; Karteek, A. Incremental Learning of Object Detectors without Catastrophic Forgetting. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3420–3429. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 14 July 2021).
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Zhou, Z.; Shin, J.Y.; Zhang, L.; Gurudu, S.R.; Gotway, M.B.; Liang, J. Fine-Tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4761–4772. [Google Scholar]
- Muhlbaier, M.; Topalis, A.; Polikar, R. Learn++.NC: Combining Ensemble of Classifiers With Dynamically Weighted Consult-and-Vote for Efficient Incremental Learning of New Classes. IEEE Trans. Neural Netw. 2009, 20, 152–168. [Google Scholar] [CrossRef]
- Kuzborskij, I.; Orabona, F.; Caputo, B. From N to N + 1: Multiclass Transfer Incremental Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 3358–3365. [Google Scholar]
- Chen, X.; Shrivastava, A.; Gupta, A. NEIL: Extracting Visual Knowledge from Web Data. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 1409–1416. [Google Scholar]
- Divvala, S.K.; Farhadi, A.; Guestrin, C. Learning Everything about Anything: Webly-Supervised Visual Concept Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3270–3277. [Google Scholar]
- Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature Learning. 2011. Available online: http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf (accessed on 14 July 2021).
- Yann, L.C.; Corinna, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 14 July 2021).
- Taylor, M.E.; Stone, P. An Introduction to Intertask Transfer for Reinforcement Learning. AI Mag. 2020, 32, 15–34. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks. arXiv 2018, arXiv:1808.06866. [Google Scholar]
- Rusu, A.A.; Rabinowitz, N.C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive Neural Networks. arXiv 2016, arXiv:1606.04671. [Google Scholar]
- Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive Neural Architecture Search. arXiv 2018, arXiv:1712.00559. [Google Scholar]
- Perez-Rua, J.M.; Baccouche, M.; Pateux, S. Efficient Progressive Neural Architecture Search. arXiv 2018, arXiv:1808.00391. [Google Scholar]
- Zhang, Z.; Ning, G.; Cen, Y.; Li, Y.; Zhao, Z.; Sun, H.; He, Z. Progressive Neural Networks for Image Classification. arXiv 2018, arXiv:1804.09803. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-D.; Wang, Y.; Wang, S.; Liang, T.; Zhao, Q.; Tang, Z.; Ling, H. CBNet: A Novel Composite Backbone Network Architecture for Object Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Sarwar, S.S.; Ankit, A.; Roy, K. Incremental Learning in Deep Convolutional Neural Networks Using Partial Network Sharing. IEEE Access 2020, 8, 4615–4628. [Google Scholar] [CrossRef]
- Sun, G.; Yang, C.; Liu, J.; Liu, L.; Xu, X.; Yu, H. Lifelong Metric Learning. IEEE Trans. Cybern. 2019, 49, 3168–3179. [Google Scholar] [CrossRef] [PubMed]
- Triki, A.R.; Aljundi, R.; Blaschko, M.B.; Tuytelaars, T. Encoder Based Lifelong Learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1329–1337. [Google Scholar]
- Xiao, T.; Zhang, J.; Yang, K.; Peng, Y.; Zhang, Z. Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 177–186. [Google Scholar]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Hayes, T.L.; Kanan, C. Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
Classes | 1–10 | 11–20 | 21–30 | 31–40 | 41–50 | 51–60 | 61–70 | 71–80 | 81–90 | 91–100 |
---|---|---|---|---|---|---|---|---|---|---|
Errors(%) | 13.075 | 17.275 | 14.400 | 18.050 | 14.675 | 20.275 | 17.675 | 15.175 | 18.400 | 17.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, Z.A.; Park, U. Progressive Convolutional Neural Network for Incremental Learning. Electronics 2021, 10, 1879. https://doi.org/10.3390/electronics10161879
Siddiqui ZA, Park U. Progressive Convolutional Neural Network for Incremental Learning. Electronics. 2021; 10(16):1879. https://doi.org/10.3390/electronics10161879
Chicago/Turabian StyleSiddiqui, Zahid Ali, and Unsang Park. 2021. "Progressive Convolutional Neural Network for Incremental Learning" Electronics 10, no. 16: 1879. https://doi.org/10.3390/electronics10161879
APA StyleSiddiqui, Z. A., & Park, U. (2021). Progressive Convolutional Neural Network for Incremental Learning. Electronics, 10(16), 1879. https://doi.org/10.3390/electronics10161879