Feature Matching Synchronized Reasoning from Energy-Based Memory Network for Intelligent Data Management in Cloud Computing Data Center
Abstract
:1. Introduction
2. Related Works: Cloud Computing Database and the Functions of Brain Memory
2.1. Cloud Computing Database Strategy in the Data Center
2.2. Human Brain and Its Function: Memory Formation in the Neural Network
2.3. Event-Related Synchronization
3. Energy-Based Memory Network System Design for Cloud Database and ERS Data Extraction Mechanism
3.1. Energy-Based Memory Network System Design for Cloud Database
3.1.1. System Overview
3.1.2. System Workflow
3.2. The Basic Frame of an Energy-Based Memory Network
3.2.1. The Structure of an Energy-Based Memory Network
3.2.2. Qualia Concept for Feature Matching
3.2.3. Memory Storage Cycle and Management
3.3. Event-Related Synchronized Data Extraction Mechanism
3.3.1. Input Stream and Input Stream Analysis
3.3.2. Thinking Thread Extraction
- T1:
- T2:
- T3:
- T4:
Algorithm 1: Thinking Thread Extraction |
1: enter the InputKey 2: search M_Id matching with InputKey 3: if Found: 4: EXTRACTION(InputKey, Mnet) 5: else: 6: exit 7: stop // EXTRACTION function 8: EXTRACTION(InputKey, MNet): 9: for index range(1,1,m): 10: M_ID_flag=False 11: while(True): 12: if(EOF): 13: exit 14: else: 15: if InputKey != M_Id: 16: exit 17: else: 18: while(not EOF): 19: if M_Id_flag=False 20: put M_Cap to QUEUE 21: M_Id_flag=True 22: M_Cap=M_Cap.next |
3.3.3. Qualia Matching ERS Thinking Thread Extraction and Reasoning
Algorithm 2: ERS Thinking Thread Extraction and Reasoning |
1: enter the InputKey, ERS signal, Extraction depth & Energy Strength θ. 2: while(True): 3: if(EOF): 4: exit 5: else: 6: copy Thread to Tlist 7: if option == QM: 8: QualiaMatching 9: if option == DE 10: DeepExtraction 11: if option == ES: 12: print(OutStream(QM,DE)) 13: else: 14: print(OutStream(QM,DE)) 15: else: 16: print(OutStream(QM,Nill)) 17: else: 18: print(OutStream(Nill,Nill) // Qualia Matching 19: QualiaMatching: 20: enter ERS signal 21: while(True): 22: if(EOF): 23: exit 24: else: 25: QualiaMatching 26: Change Energy Value of Memory Capsule, // DeepExtraction 27: DeepExtraction: 28: enter extraction depth, δ 29: while(True): 30: if(True): 31: exit 32: else: 33: if : 34: 35: else: 36: |
4. Experiments
- T1:
- M1 0.9 M2 0.6 M5 0.9 M7 0.0 NIL
- T2:
- M1 0.9 M2 0.5 M6 0.0 NIL
- T1:
- M1 0.9 M2 0.6 M5 0.0 NIL
- T2:
- M1 0.9 M2 0.0 NIL
5. Conclusions
Funding
Conflicts of Interest
References
- Cloud Computing. Available online: https://www.seaglasstechnology.com/what-are-the-three-types-of-cloud-computing/ (accessed on 25 June 2021).
- The Best Data Center Infrastructure Management Platform. Available online: https://modus.com/wp-content/ (accessed on 25 June 2021).
- Cover, T.M.; Thomas, J. A Elements of Information Theory, 2nd ed.; Wiley Interscience Press: Hoboken, NJ, USA, 2005. [Google Scholar]
- Singla, A.; Hong, C.Y.; Popa, L.; Godfrey, P.B. Jellyfish: Networking data center randomly. In Proceedings of the Nsdi’12, San Jose, CA, USA, 25–27 April 2012. [Google Scholar]
- Karkera, K. Building Probabilistic Graphical Models with Python; Solve Machine Learning Problems Using Probabilistic Graphical Models Implemented in Python with Real-World Applications; PACKT: Birmingham, UK, 2014. [Google Scholar]
- Boyce, B.R.; Meadow, C.T.; Kraft, D.H.; Kraft, D.H.; Meadow, C.T. Text. Information Retrieval Systems; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Farrington, N.; Porter, G.; Radhakrishnan, S.; Bazzaz, H.H.; Subramanya, V.; Fainman, Y.; Papen, G.; Vahdat, A. Helios: A Hybrid electrical/optical switch architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2010, New Delhi, India, 30 August–3 September 2010; pp. 339–350. [Google Scholar]
- AI-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, Commodity Data Center Network Architecture. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 63–74. [Google Scholar] [CrossRef]
- Roy, A.; Zeng, H.; Bagga, J.; Porter, G.; Snoeren, A.C. Inside the social network’s (datacenter) network. In Proceedings of the ACM SIGCOMM’15 on Special Interest Group on Data Communication, London, UK, 17–21 August 2015; pp. 123–137. [Google Scholar]
- Halperin, D.; Kandula, S.; Padhye, J.; Bahl, P.; Wetherall, D. Augmenting data center networks with multi-gigabit wireless links. In Proceedings of the ACM SIGCOMM, Toronto, ON, Canada, 15–19 August 2011; pp. 38–49. [Google Scholar]
- Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.; Wischik, D.; Handley, M. Improving Datacenter Performance and Robustness with Multipath TCP. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 266–277. [Google Scholar] [CrossRef]
- Ranjan, R. Streaming Big Data Processing in Data Center Clouds. IEEE Cloud Comput. 2014, 1, 78–83. [Google Scholar] [CrossRef]
- Carney, D.; Çetintemel, U.; Cherniack, M.; Convey, C.; Lee, S.; Seidman, G.; Tatbul, N.; Zdonik, S.; Stonebraker, M. Aurora(Brown, MIT, Brandies): Monitoring streams—A new class of data management applications. In Proceedings of the VLDB, Hong Kong, China, 20–23 August 2002. [Google Scholar]
- Chandrasekaran, S.; Cooper, O.; Deshpande, A.; Franklin, M.J.; Hellerstein, J.M.; Hong, W.; Shah, M.A. TelegraphCQ(Berkeley): Continuous data flow processing for an uncertain world. In Proceedings of the SIGMOD ‘03: 2003 ACM SIGMOD International Conference on Management of Data, San Diego, CA, USA, 9–12 June 2003. [Google Scholar]
- Cranor, C.; Gao, Y.; Johnson, T.; Shkapenyuk, V.; Spatscheck, O. Gigascope: High performance network monitoring with an SQL interface. In Proceedings of the SIGMOID 2002, Madison, WI, USA, 3–6 June 2002. [Google Scholar]
- Eisenbud, D.E.; Yi, C.; Contavaschellerlli, C.; Smith, C.; Kononov, R.; Mann-Hielscher, E.; Hosein, J.D. Maglev: A fast and reliable software network load balancer. In Proceedings of the NSDI’16, 13th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 16–18 March 2016. [Google Scholar]
- Arasu, A.; Babcock, B.; Babu, S.; Cieslewicz, J.; Datar, M.; Ito, K.; Motwan, R.; Srivastava, U.; Widom, J. STREAM(Stanford): An adaptive engine for stream query processing. In Proceedings of the SIGMOID 2004, Paris, France, 13–18 June 2004. [Google Scholar]
- Girod, L.; Jamieson, K.; Mei, Y.; Newton, R.; Rost, S.; Thiagarajan, A.; Balakrishnan, H.; Madden, S. Wavescope(MIT): The case or a signal-oriented data stream management system. In Proceedings of the CIDR 2007, Boulder, CO, USA, 31 October–3 November 2006. [Google Scholar]
- Shim, J.Y. Brain Scret; Bookhill: Kathmandu, Nepal, 2013. [Google Scholar]
- Sporns, O. Networks of Brain; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Carter, R. Mapping the Memory; Ulysess Press: Berkeley, CA, USA, 2006. [Google Scholar]
- Kim, K.; Shin, W.; Kang, M.; Lee, S.; Kim, D.; Kang, R.; Jung, Y.; Cho, Y.; Yang, E.; Kim, H.; et al. Presynaptic PTPs regulates postsynaptic NMDA receptor function through direction adhesion-independent mechanisms. eLife 2020, 9, e54224. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Senggupta, S. VL2: A scalable and flexible data center network. In Proceedings of the ACM SIGCOMM’09 Data Communication, Barcelona, Spain, 16–21 August 2009; pp. 51–62. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Pfurt Lopescheller da Silva, F.H. Event Related Synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalogr. Clin. Neurophysiol. 1992, 83, 62–69. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Da Silva, F.L. EVENT-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Shim, J. Self reorganizing knowledge network by selective perception. In Proceedings of the ICCE_ASIA2020, Seoul, Korea, 1–3 November 2020. [Google Scholar]
- Shim, J. Conditional reconfiguration mechanism by i/e gauge. In Proceedings of the ISCE2014, Jeju, Korea, 22–25 June 2014; pp. 22–25. [Google Scholar]
- Nodelman, U.; Allen, C.; Perry, J. Qualia. In Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 1997. [Google Scholar]
- Qualia. Available online: https://en.wikipedia.org/wiki/Qualia (accessed on 15 May 2021).
- Shim, J. Stem cell like incarnation self repairing system in the iot intelligent network. In Proceedings of the IEEE TENSYMP 2021, Jeju, Korea, 23–25 August 2021. [Google Scholar]
Node i | Ex | Ey | Pi | Qi | Rij | Node j |
---|---|---|---|---|---|---|
start | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
start | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
0.0 | NILL | |||||
0.0 | NILL | |||||
0.0 | NILL | |||||
0.0 | NILL |
1.0 | 0.7 | 1.0 | V | |
0.9 | 0.6 | 1.0 | F | |
0.8 | 0.8 | 1.0 | D | |
0.5 | 0.6 | 1.0 | G | |
0.9 | 0.3 | 1.0 | V | |
0.5 | 0.7 | 1.0 | W | |
0.9 | 0.8 | 1.0 | F | |
0.4 | 0.6 | 1.0 | G | |
0.8 | 0.2 | 1.0 | F | |
0.4 | −0.3 | 1.0 | W | |
0.5 | 0.3 | 1.0 | V | |
0.7 | 0.7 | 1.0 | G | |
0.6 | 0.5 | 1.0 | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J. Feature Matching Synchronized Reasoning from Energy-Based Memory Network for Intelligent Data Management in Cloud Computing Data Center. Electronics 2021, 10, 1900. https://doi.org/10.3390/electronics10161900
Shim J. Feature Matching Synchronized Reasoning from Energy-Based Memory Network for Intelligent Data Management in Cloud Computing Data Center. Electronics. 2021; 10(16):1900. https://doi.org/10.3390/electronics10161900
Chicago/Turabian StyleShim, JeongYon. 2021. "Feature Matching Synchronized Reasoning from Energy-Based Memory Network for Intelligent Data Management in Cloud Computing Data Center" Electronics 10, no. 16: 1900. https://doi.org/10.3390/electronics10161900
APA StyleShim, J. (2021). Feature Matching Synchronized Reasoning from Energy-Based Memory Network for Intelligent Data Management in Cloud Computing Data Center. Electronics, 10(16), 1900. https://doi.org/10.3390/electronics10161900