Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures
Abstract
:1. Introduction
2. Problem Statement
3. Network Model and VON Provisioning Algorithm
3.1. Network Model
3.2. VON Provisioning Algorithm
Algorithm 1 Flexible-Grid Aware-Virtual Network Embedding Algorithm (FA-VNE) |
Input: and Output: () and() |
|
Algorithm 2 Flexible-Grid Unaware-Virtual Network Embedding Algorithm (FU-VNE) |
Input: and Output: |
|
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Xie, W.; She, Q.; Wang, X.; Palacharla, P.; Sekiya, M. RWA f or network virtualization in optical WDM networks. In Proceedings of the 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 17–21 March 2013. [Google Scholar]
- Shakya, S.; Pradhan, N.; Cao, X.; Ye, Z.; Qiao, C. Virtual network embedding and reconfiguration in elastic optical networks. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014. [Google Scholar]
- Chaudhari, S.; Mani, R.S.; Raundale, P. SDN network virtualization survey. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016. [Google Scholar]
- Belbekkouche, A.; Hasan, M.; Karmouch, A. Resource discovery and allocation in network virtualization. IEEE Commun. Surv. Tutor. 2012, 14, 1114–1128. [Google Scholar] [CrossRef]
- Chowdhury, N.M.K.; Boutaba, R. A survey of network virtualization. Comput. Netw. 2010, 54, 862–876. [Google Scholar] [CrossRef]
- Hwang, J.; Ramakrishnan, K.; Wood, T. NetVM: High performance and flexible networking using virtualization on commodity platforms. IEEE Trans. Netw. Serv. Manag. 2015, 12, 34–47. [Google Scholar] [CrossRef]
- Khan, A.; Zugenmaier, A.; Jurca, D.; Kellerer, W. Network virtualization: A hypervisor for the Internet? IEEE Commun. Mag. 2012, 50, 136–143. [Google Scholar] [CrossRef]
- Blenk, A.; Basta, A.; Reisslein, M.; Kellerer, W. Survey on Network Virtualization Hypervisors for Software Defined Networking. IEEE Commun. Surv. Tutor. 2016, 18, 655–685. [Google Scholar] [CrossRef] [Green Version]
- Barakabitze, A.A.; Ahmad, A.; Mijumbi, R.; Hines, A. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 2020, 167, 106984. [Google Scholar] [CrossRef]
- Koponen, T.; Amidon, K.; Balland, P.; Casado, M.; Chanda, A.; Fulton, B.; Ganichev, I.; Gross, J.; Ingram, P.; Jackson, E.; et al. Network virtualization in multi-tenant datacenters. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014. [Google Scholar]
- Fischer, A.; Botero, J.F.; Beck, M.T.; De Meer, H.; Hesselbach, X. Hesselbach. Virtual network embedding: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [Google Scholar] [CrossRef]
- Dávalos, E.J.; Barán, B. A Survey on Algorithmic Aspects of Virtual Optical Network Embedding for Cloud Networks. IEEE Access 2018, 6, 20893–20906. [Google Scholar] [CrossRef]
- Gerstel, O.; Jinno, M.; Lord, A.; Yoo, S.J.B. Elastic optical networking: A new dawn for the optical layer? IEEE Commun. Mag. 2012, 50, s12–s20. [Google Scholar] [CrossRef]
- Peng, S.; Nejabati, R.; Simeonidou, D. Impairment-Aware Optical Network Virtualization in Single-Line-Rate and Mixed-Line-Rate WDM Networks. J. Opt. Commun. Netw. 2013, 5, 283–293. [Google Scholar] [CrossRef]
- Shahriar, N.; Taeb, S.; Chowdhury, S.R.; Tornatore, M.; Boutaba, R.; Mitra, J.; Hemmati, M. Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks. In Proceedings of the IEEE INFOCOM—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019. [Google Scholar]
- Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S. Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies. IEEE Commun. Mag. 2009, 47, 66–73. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Q.; Zhang, S.; Gao, P.; Chen, B.; Gu, J. Energy-Aware Virtual Optical Network Embedding in Sliceable-Transponder-Enabled Elastic Optical Networks. IEEE Access 2019, 7, 41897–41912. [Google Scholar] [CrossRef]
- Ding, S.; Bose, S.; Shen, G. Spectrum trading between virtual optical networks with time-varying traffic in an elastic optical network. J. Opt. Commun. Netw. 2020, 12, 24–37. [Google Scholar] [CrossRef]
- Ding, S.; Shen, G.; Pan, K.X.; Bose, S.K.; Zhang, Q.; Mukherjee, B. Blockchain-Assisted Spectrum Trading Between Elastic Virtual Optical Networks. IEEE Netw. 2020, 34, 205–211. [Google Scholar] [CrossRef]
- Patel, A.; Ji, P.; Huang, Y.; Wang, T. Distance-Adaptive Virtual Network Embedding in Software-Defined Optical Networks. In Proceedings of the OptoElectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching, Kyoto, Japan, 30 June–4 July 2013. [Google Scholar]
- Lin, R.; Luo, S.; Zhou, J.; Wang, S.; Cai, A.; Zhong, W.; Zukerman, M. Virtual Network Embedding with Adaptive Modulation in Flexi-Grid Networks. J. Lightwave Technol. 2018, 36, 3551–3563. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, S.; Sun, Q.; Li, G.; Chen, B.; Gu, J. Fragmentation-Aware VONE in Elastic Optical Networks. J. Opt. Commun. Netw. 2018, 10, 809–822. [Google Scholar] [CrossRef]
- Lin, R.; Luo, S.; Wang, H.; Wang, S. Energy-aware virtual network embedding in flexi-grid networks. Opt. Express 2017, 25, 29699–29713. [Google Scholar] [CrossRef]
- Lin, R.; Luo, S.; Zhou, J.; Wang, S.; Chen, B.; Zhang, X.; Cai, A.; Zhong, W.; Zukerman, M. Column generation algorithms for virtual network embedding in flexi-grid optical networks. Opt. Express 2018, 26, 10898–10913. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tornatore, M.; Xia, M.; Wang, J.; Zhang, J.; Zhao, Y.; Zhang, J.; Mukherjee, B. Migration from fixed grid to flexible grid in optical networks. IEEE Commun. Mag. 2015, 53, 2. [Google Scholar] [CrossRef]
- Mayoral, A.; López, V.; de Dios, O.G.; Fernández-Palacios, J. Migration Steps Toward Flexi-Grid Networks. J. Opt. Commun. Netw. 2014, 6, 988–996. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Y.; Zhang, J.; Mukherjee, B.; Zhang, J.; Wang, X. Static Routing and Spectrum Assignment in Co-existing Fixed/Flex Grid Optical Networks. In Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest (online), San Francisco, CA, USA, 9–13 March 2014. [Google Scholar]
- Yu, X.; Tornatore, M.; Zhao, Y.; Zhang, J.; Wang, X.; Zhang, S.; Wang, R.; Wang, J.; Zhang, J.; Mukherjee, B. When and how should the optical network be upgraded to flex grid? In Proceedings of the European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014. [Google Scholar]
- Rofoee, B.; Zervas, G.; Yan, Y.; Amaya, N.; Simeonidou, D. Flexible and Adaptive Optical Metro Networking on Fixed/Flex Grid Exploiting Hybrid Time/Frequency for Shared Resource Allocation. In Proceedings of the European Conference and Exhibition on Optical Communication, OSA Technical Digest (Online), Amsterdam, The Netherlands, 16–20 September 2012. [Google Scholar]
- Ahmed, T.; Rahman, S.; Ferdousi, S.; Tornatore, M.; Mitra, A.; Chatterjee, B.C.; Mukherjee, B. Dynamic routing, spectrum, and modulation-format allocation in mixed-grid optical networks. J. Opt. Commun. Netw. 2020, 12, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Palkopoulou, E.; Angelou, M.; Klonidis, D.; Christodoulopoulos, K.; Klekamp, A.; Buchali, F.; Varvarigos, E.; Tomkos, I. Quantifying Spectrum, Cost, and Energy Efficiency in Fixed-Grid and Flex-Grid Networks [Invited]. J. Opt. Commun. Netw. 2012, 4, B42–B51. [Google Scholar] [CrossRef]
- Papanikolaou, P.; Soumplis, P.; Manousakis, K.; Papadimitriou, G.; Ellinas, G.; Christodoulopoulos, K.; Varvarigos, E. Minimizing Energy and Cost in Fixed-Grid and Flex-Grid Networks. J. Opt. Commun. Netw. 2015, 7, 337–351. [Google Scholar] [CrossRef]
- Zong, Y.; Ou, Y.; Hammad, A.; Kondepu, K.; Nejabati, R.; Simeonidou, D.; Liu, Y.; Guo, L. Location-Aware Energy Efficient Virtual Network Embedding in Software-Defined Optical Data Center Networks. J. Opt. Commun. Netw. 2018, 10, B58–B70. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, X.; Zhao, Y.; Nag, A.; Zhang, J. Auxiliary-Graph-Based Energy-Efficient Traffic Grooming in IP-Over-Fixed/Flex-Grid Optical Networks. J. Lightwave Technol. 2021, 39, 3011–3024. [Google Scholar] [CrossRef]
- Yu, X.; Lu, L.; Zhao, Y.; Zhang, J. VON Provisioning Over Co-Existing Fixed/Flexible Grid Optical Networks. In Proceedings of the Opto-Electronics and Communications Conference (OECC), Hongkong, China, 3–7 July 2021. [Google Scholar]
Parameters | Definitions |
---|---|
the substrate network | |
the set of substrate nodes ( is the total number of nodes) | |
the set of substrate fiber links ( is the total number of links) | |
the computing capacity of | |
the bandwidth capacity of | |
the VON requests | |
the set of virtual nodes for VON request ( is the total number of virtual nodes) | |
the set of virtual links for VON request ( is the total number of virtual links) | |
the computing requirement of | |
the bandwidth requirement of | |
the mapping of VON nodes to the substrate nodes | |
the mapping of VON links to the substrate links |
Parameters | Bandwidth (Gb/s) | Percentage | Flex-Grid Nodes |
---|---|---|---|
Network Scenario A (NS-A) | 40 | 50% | 30% |
100 | 30% | ||
200 | 15% | ||
400 | 5% | ||
Network Scenario B (NS-B) | 40 | 50% | 60% |
100 | 30% | ||
200 | 15% | ||
400 | 5% | ||
Network Scenario C (NS-C) | 40 | 10% | 30% |
100 | 40% | ||
200 | 30% | ||
400 | 20% | ||
Network Scenario D (NS-D) | 40 | 10% | 60% |
100 | 40% | ||
200 | 30% | ||
400 | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Lu, L.; Zhao, Y.; Wang, F.; Nag, A.; Li, X.; Zhang, J. Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures. Electronics 2021, 10, 2067. https://doi.org/10.3390/electronics10172067
Yu X, Lu L, Zhao Y, Wang F, Nag A, Li X, Zhang J. Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures. Electronics. 2021; 10(17):2067. https://doi.org/10.3390/electronics10172067
Chicago/Turabian StyleYu, Xiaosong, Lu Lu, Yongli Zhao, Feng Wang, Avishek Nag, Xinghua Li, and Jie Zhang. 2021. "Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures" Electronics 10, no. 17: 2067. https://doi.org/10.3390/electronics10172067
APA StyleYu, X., Lu, L., Zhao, Y., Wang, F., Nag, A., Li, X., & Zhang, J. (2021). Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures. Electronics, 10(17), 2067. https://doi.org/10.3390/electronics10172067