Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation
Abstract
:1. Introduction
- Semiconductor and multicore technology.
- Energy harvesting and transfer.
- Algorithm transformation techniques.
- Implementation of deep neural networks on edge devices.
- User-centered design of IoMT.
2. Related Works
3. Technologies: Internet of Medical Things
3.1. Technologies for IoMT Edge Devices
3.2. Algorithms for IoMT Edge Devices
3.2.1. Sub-Nyquist Sampling
3.2.2. Approximate Computing
4. Techniques: Energy Harvesting for IoMT Devices
4.1. Energy Harvesting Sources
4.2. Energy Transfer
4.3. Energy Harvesting Solutions for Medical Wearable Devices
5. Implementation: Deep-learning in IoMT Edge Devices
5.1. Deep Learning
5.2. Platforms to Execute DNN Applications
5.3. Deploying DNNs on IoMT Edge Devices
5.4. Algorithms and Methods to Reduce Computation and Power Consumption in Embedded Devices
6. User-Centred Design
7. Conclusions and Open Issues
Author Contributions
Funding
Conflicts of Interest
References
- WHO Facts on Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 24 August 2021).
- Sebestyen, G.; Stoica, I.; Hangan, A. Human activity recognition and monitoring for elderly people. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 8–10 September 2016; pp. 341–347. [Google Scholar] [CrossRef]
- Ali, M.; Ali, A.A.; Taha, A.E.; Dhaou, I.B.; Gia, T.N. Intelligent Autonomous Elderly Patient Home Monitoring System. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Secrest, A.M.; Becker, D.J.; Kelsey, S.F.; LaPorte, R.E.; Orchard, T.J. Characterising Sudden Death and Dead-in-Bed Syndrome in Type 1 Diabetes: Analysis from 2 Childhood-Onset Type 1 Diabetes Registries. Diabet. Med. 2017, 28, 293–300. [Google Scholar]
- Gia, T.N.; Ali, M.; Dhaou, I.B.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. IoT-based continuous glucose monitoring system: A feasibility study. Procedia Comput. Sci. 2017, 109, 327–334. [Google Scholar] [CrossRef]
- Gatouillat, A.; Badr, Y.; Massot, B.; Sejdić, E. Internet of Medical Things: A Review of Recent Contributions Dealing With Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Liang, T.; Yuan, Y.J. Wearable Medical Monitoring Systems Based on Wireless Networks: A Review. IEEE Sens. J. 2016, 16, 8186–8199. [Google Scholar] [CrossRef]
- Rezaei, F.; Hempel, M.; Sharif, H. A survey of recent trends in wireless communication standards, routing protocols, and energy harvesting techniques in E-health applications. Int. J. E-Health Med. Commun. (IJEHMC) 2015, 6, 1–21. [Google Scholar] [CrossRef]
- Ghamari, M.; Janko, B.; Sherratt, R.S.; Harwin, W.; Piechockic, R.; Soltanpur, C. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 2016, 16, 831. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, F.; Krishnan, S. Wearable Hardware Design for the Internet of Medical Things (IoMT). Sensors 2018, 18, 3812. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Jiang, X.; Ren, H.; Guo, Y. Edge-Cloud Computing and Artificial Intelligence in Internet of Medical Things: Architecture, Technology and Application. IEEE Access 2020, 8, 101079–101092. [Google Scholar] [CrossRef]
- Greco, L.; Percannella, G.; Ritrovato, P.; Tortorella, F.; Vento, M. Trends in IoT based solutions for health care: Moving AI to the edge. Pattern Recognit. Lett. 2020, 135, 346–353. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT-Based Applications in Healthcare Devices. J. Healthc. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Amin, S.U.; Hossain, M.S. Edge Intelligence and Internet of Things in Healthcare: A Survey. IEEE Access 2021, 9, 45–59. [Google Scholar] [CrossRef]
- ITRS. International Technology Roadmap for Semiconductors 2013. Available online: http://www.itrs2.net/2013-itrs.html (accessed on 29 January 2016).
- Frank, D.J.; Dennard, R.H.; Nowak, E.; Solomon, P.M.; Taur, Y.; Wong, H.S.P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288. [Google Scholar] [CrossRef]
- Yu, E.; Chang, L.; Ahmed, S.; Wang, H.; Bell, S.; Yang, C.Y.; Tabery, C.; Ho, C.; Xiang, Q.; King, T.J.; et al. FinFET scaling to 10 nm gate length. In Proceedings of the 2002 Electron Devices Meeting, IEDM’02, San Francisco, CA, USA, 8–11 December 2002; pp. 251–254. [Google Scholar]
- Kao, J.; Narendra, S.; Chandrakasan, A. Subthreshold leakage modeling and reduction techniques. In Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 10–14 November 2002; pp. 141–148. [Google Scholar]
- Shafaei Bejestan, A.; Wang, Y.; Ramadurgam, S.; Xue, Y.; Bogdan, P.; Pedram, M. Analyzing the Dark Silicon Phenomenon in a Many-Core Chip Multi-Processor under Deeply-Scaled Process Technologies. In Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, Pittsburgh, PA, USA, 20–22 May 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 127–132. [Google Scholar] [CrossRef]
- Dhaou, I.B.; Tenhunen, H. Design Techniques of 5G Mobile Devices in the Dark Silicon Era. In 5G Mobile Communications; Xiang, W., Zheng, K., Shen, X.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 381–400. [Google Scholar] [CrossRef]
- King, T.J. FinFETs for nanoscale CMOS digital integrated circuits. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 6–10 November 2005; pp. 207–210. [Google Scholar]
- Ojo, M.O.; Giordano, S.; Procissi, G.; Seitanidis, I.N. A Review of Low-End, Middle-End, and High-End Iot Devices. IEEE Access 2018, 6, 70528–70554. [Google Scholar] [CrossRef]
- Behmanesh, A.; Sayfouri, N.; Sadoughi, F. Technological Features of Internet of Things in Medicine: A Systematic Mapping Study. Wirel. Commun. Mob. Comput. 2020, 2020, 9238614. [Google Scholar] [CrossRef]
- Wan, J.; Al-awlaqi, M.; Li, M.; OGrady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [Google Scholar] [CrossRef]
- Gautschi, M.; Schiavone, P.D.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gürkaynak, F.K.; Benini, L. Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2700–2713. [Google Scholar] [CrossRef] [Green Version]
- Eggimann, M.; Mach, S.; Magno, M.; Benini, L. A RISC-V Based Open Hardware Platform for Always-On Wearable Smart Sensing. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2019; pp. 169–174. [Google Scholar]
- Candes, E.J.; Wakin, M.B. An Introduction To Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Foucart, S.; Rauhut, H. A Mathematical Introduction to Compressive Sensing, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [Green Version]
- Djelouat, H.; Al Disi, M.; Boukhenoufa, I.; Amira, A.; Bensaali, F.; Kotronis, C.; Politi, E.; Nikolaidou, M.; Dimitrakopoulos, G. Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020, 72, 102839. [Google Scholar] [CrossRef]
- Xu, Q.; Mytkowicz, T.; Kim, N.S. Approximate Computing: A Survey. IEEE Des. Test 2016, 33, 8–22. [Google Scholar] [CrossRef]
- Dhaou, I.B. Hardware architecture for an anti-traffic noise system. Microelectron. J. 2015, 46, 370–376. [Google Scholar] [CrossRef]
- Zervakis, G.; Tsoumanis, K.; Xydis, S.; Soudris, D.; Pekmestzi, K. Design-Efficient Approximate Multiplication Circuits Through Partial Product Perforation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 3105–3117. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Mohapatra, D.; Raghunathan, A.; Roy, K. Low-Power Digital Signal Processing Using Approximate Adders. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 124–137. [Google Scholar] [CrossRef]
- Jiang, H.; Santiago, F.J.H.; Mo, H.; Liu, L.; Han, J. Approximate Arithmetic Circuits: A Survey, Characterization, and Recent Applications. Proc. IEEE 2020, 108, 2108–2135. [Google Scholar] [CrossRef]
- Osta, M.; Ibrahim, A.; Chible, H.; Valle, M. Inexact Arithmetic Circuits for Energy Efficient IoT Sensors Data Processing. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Prabakaran, B.S.; Rehman, S.; Shafique, M. XBioSiP: A Methodology for Approximate Bio-Signal Processing at the Edge. In Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, Las Vegas, NV, USA, 2–6 June 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Chen, Y.; Yang, X.; Qiao, F.; Han, J.; Wei, Q.; Yang, H. A Multi-accuracy-Level Approximate Memory Architecture Based on Data Significance Analysis. In Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, USA, 11–13 July 2016; pp. 385–390. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Hung, N.H.; Kim, H.; Lee, H.J. An Approximate Memory Architecture for Energy Saving in Deep Learning Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1588–1601. [Google Scholar] [CrossRef]
- Ranjan, A.; Raha, A.; Raghunathan, V.; Raghunathan, A. Approximate memory compression for energy-efficiency. In Proceedings of the 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, China, 24–26 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chong, Y.W.; Ismail, W.; Ko, K.; Lee, C.Y. Energy Harvesting For Wearable Devices: A Review. IEEE Sens. J. 2019, 19, 9047–9062. [Google Scholar] [CrossRef]
- Khalid, S.; Raouf, I.; Khan, A.; Kim, N.; Kim, H.S. A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
- Maxim Integrated. Analog, Linear, and Mixed-Signal Devices. Available online: https://www.maximintegrated.com/en.html (accessed on 14 October 2019).
- ROHM Semiconductor—ROHM Co., Ltd. Available online: https://www.rohm.com/ (accessed on 14 October 2019).
- Xiao, Z.; Tan, X.; Chen, X.; Chen, S.; Zhang, Z.; Zhang, H.; Wang, J.; Huang, Y.; Zhang, P.; Zheng, L.; et al. An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring. IEEE J. Biomed. Health Inform. 2015, 19, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Salo, T.; Kirstein, K.U.; Sedivy, J.; Grunenfelder, J.; Vancura, T.; Zund, G.; Baltes, H. Continuous blood pressure monitoring utilizing a CMOS tactile sensor. In Proceedings of the The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montréal, QC, Canada, 20–24 July 2004; Volume 1, pp. 23226–23229. [Google Scholar] [CrossRef]
- Sho, A.; Masanori, M.; Takahiro, N.; Yoshiyuki, H.; Yutaka, N.; Shuji, T. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer. Sensors 2017, 17, 2451. [Google Scholar]
- Ben Ammar, M.; Sahnoun, S.; Fakhfakh, A.; Kanoun, O. Design of a DC-DC Boost Converter of Hybrid Energy Harvester for Low-Power Biomedical Applications. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Systems, Signals & Devices (SSD), Sfax, Tunisia, 20–23 July 2020; pp. 955–959. [Google Scholar]
- Chalasani, S.; Conrad, J.M. A survey of energy harvesting sources for embedded systems. In Proceedings of the IEEE SoutheastCon 2008, Huntsville, AL, USA, 3–6 April 2008; pp. 442–447. [Google Scholar] [CrossRef]
- Ghomian, T.; Mehraeen, S. Survey of energy scavenging for wearable and implantable devices. Energy 2019, 178, 33–49. [Google Scholar] [CrossRef]
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef]
- Ali, F.; Raza, W.; Li, X.; Gul, H.; Kim, K.H. Piezoelectric energy harvesters for biomedical applications. Nano Energy 2019, 57, 879–902. [Google Scholar] [CrossRef]
- Zou, Y.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303. [Google Scholar] [CrossRef]
- Bradai, S.; Naifar, S.; Trigona, C.; Baglio, S.; Kanoun, O. Electromagnetic transducer with bistable-RMSHI for energy harvesting from very weak kinetic sources. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TA, USA, 14–17 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Lagomarsini, C.; Lombardi, G.; Sylvestre, A.; Jean-Mistral, C. Hybrid piezoelectric-electrostatic generators for wearable energy harvesting applications. Smart Mater. Struct. 2019, 28, 035003. [Google Scholar] [CrossRef]
- Liu, Y.; Khanbareh, H.; Halim, M.A.; Feeney, A.; Zhang, X.; Heidari, H.; Ghannam, R. Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Select 2021, 2, 1459–1479. [Google Scholar] [CrossRef]
- Meier, R.; Kelly, N.; Almog, O.; Chiang, P. A piezoelectric energy-harvesting shoe system for podiatric sensing. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 622–625. [Google Scholar]
- Xin, Y.; Li, X.; Tian, H.; Guo, C.; Qian, C.; Wang, S.; Wang, C. Shoes-equipped piezoelectric transducer for energy harvesting: A brief review. Ferroelectrics 2016, 493, 12–24. [Google Scholar] [CrossRef]
- Moro, L.; Benasciutti, D. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct. 2010, 19, 115011. [Google Scholar] [CrossRef]
- Halim, M.A.; Cho, H.; Park, J.Y. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag. 2015, 106, 393–404. [Google Scholar] [CrossRef]
- Shi, Q.; Sun, Z.; Zhang, Z.; Lee, C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research 2021, 2021, 6849171. [Google Scholar] [CrossRef]
- Bouattour, G.; Kallel, B.; Sasmal, K.; Kanoun, O.; Derbel, N. Comparative study of resonant circuit for power transmission via inductive link. In Proceedings of the 2015 IEEE 12th International Multi-Conference on Systems, Signals Devices (SSD15), Monastir, Tunisia, 22–25 March 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Bouattour, G.; Kallel, B.; Kanoun, O.; Derbel, N. Primary side circuit design of a multi-coil inductive system for powering wireless sensors. Procedia Eng. 2016, 168, 920–923. [Google Scholar] [CrossRef]
- Adawy, A.; Bouattour, G.; Ibbini, M.; Derbel, N.; Kanoun, O. Sliding Mode Control of an Inductive Power Transmission System with Maximum Efficiency. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 998–1003. [Google Scholar] [CrossRef]
- Kanoun, O.; Keutel, T.; Viehweger, C.; Zhao, X.; Bradai, S.; Naifar, S.; Trigona, C.; Kallel, B.; Chaour, I.; Bouattour, G.; et al. Next Generation Wireless Energy Aware Sensors for Internet of Things: A Review. In Proceedings of the 2018 15th International Multi-Conference on Systems, Signals Devices (SSD), Yasmine Hammamet, Tunisia, 19–22 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ben Fadhel, Y.; Bouattour, G.; Bouchaala, D.; Rahmani, S.; Kanoun, O.; Derbel, N. An optimized wearable coil for Wireless Power Transfer Applications. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals Devices (SSD), Sfax, Tunisia, 20–23 July 2020; pp. 151–155. [Google Scholar] [CrossRef]
- Bouattour, G.; Chen, X.; Ben Jmeaa Derbel, H.; Kanoun, O. Investigation on Flexible Coils Geometries for Inductive Power Transmission Systems. In Proceedings of the 2019 5th International Conference on Nanotechnology for Instrumentation and Measurement (NanofIM), Sfax, Tunisia, 30–31 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Abdullahi, Q.S.; Joshi, R.; Podilchak, S.K.; Khan, S.R.; Chen, M.; Rooney, J.; Rooney, J.; Sun, D.; Desmulliez, M.P.; Georgiadis, A.; et al. Design of a wireless power transfer system for assisted living applications. Wirel. Power Transf. 2019, 6, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Teng, L.; Zhu, L.; Handschuh-Wang, S.; Zhou, X. Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering. J. Mater. Chem. C 2019, 7, 15243–15251. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, D.H.; Song, J.; Kim, H.; Lee, S.; Song, C.; Lee, J.; Song, J.; Kim, J. Smartwatch Strap Wireless Power Transfer System With Flexible PCB Coil and Shielding Material. IEEE Trans. Ind. Electron. 2019, 66, 4054–4064. [Google Scholar] [CrossRef]
- Zhu, D.; Grabham, N.J.; Clare, L.; Stark, B.H.; Beeby, S.P. Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Wagih, M.; Komolafe, A.; Zaghari, B. Dual-Receiver Wearable 6.78 MHz Resonant Inductive Wireless Power Transfer Glove Using Embroidered Textile Coils. IEEE Access 2020, 8, 24630–24642. [Google Scholar] [CrossRef]
- Sun, D.; Chen, M.; Podilchak, S.; Georgiadis, A.; Abdullahi, Q.S.; Joshi, R.; Yasin, S.; Rooney, J.; Rooney, J. Investigating flexible textile-based coils for wireless charging wearable electronics. J. Ind. Text. 2020, 50, 333–345. [Google Scholar] [CrossRef]
- Bouattour, G.; Mhammedi, T.; Yaakoubi, N.; Adawi, A.; Kanoun, O. Investigation of the Controllability of Inductive Power Transmission Systems based on Flexible Coils. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 216–221. [Google Scholar] [CrossRef]
- Zhou, M.; Al-Furjan, M.S.H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609. [Google Scholar] [CrossRef]
- von Buren, T.; Mitcheson, P.; Green, T.; Yeatman, E.; Holmes, A.; Troster, G. Optimization of inertial micropower Generators for human walking motion. IEEE Sens. J. 2006, 6, 28–38. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, R. Self-Powered Wearable Multi-Sensing Bracelet with Flexible Thermoelectric Power Generator. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (Transducers Eurosensors XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1431–1434. [Google Scholar]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Zurbuchen, A.; Pfenniger, A.; Stahel, A.; Stoeck, C.T.; Vandenberghe, S.; Koch, V.M.; Vogel, R. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 2013, 41, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Magno, M.; Boyle, D. Wearable Energy Harvesting: From body to battery. In Proceedings of the 2017 12th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS), Palma de Mallorca, Spain, 4–6 April 2017; pp. 1–6. [Google Scholar]
- Bhatia, D.; Jo, S.H.; Ryu, Y.; Kim, Y.; Kim, D.H.; Park, H.S. Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 2021, 80, 105508. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Hatcher, W.G.; Yu, W. A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access 2018, 6, 24411–24432. [Google Scholar] [CrossRef]
- Latotzke, C.; Gemmeke, T. Efficiency Versus Accuracy: A Review of Design Techniques for DNN Hardware Accelerators. IEEE Access 2021, 9, 9785–9799. [Google Scholar] [CrossRef]
- Chen, K.C.; Ebrahimi, M.; Wang, T.Y.; Yang, Y.C. NoC-Based DNN Accelerator: A Future Design Paradigm. In Proceedings of the 13th IEEE/ACM International Symposium on Networks-on-Chip, NOCS ’19, New York, NY, USA, 17–18 October 2019; pp. 1–8. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2017, arXiv:1608.08710. [Google Scholar]
- He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1398–1406. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices. arXiv 2016, arXiv:1512.06473. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing Neural Networks with the Hashing Trick. arXiv 2015, arXiv:1504.04788. [Google Scholar]
- Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. J. Mach. Learn. Res. 2017, 18, 6869–6898. [Google Scholar]
- Nabavinejad, S.M.; Reda, S.; Ebrahimi, M. BatchSizer: Power-Performance Trade-off for DNN Inference. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, ASPDAC ’21, Tokyo, Japan, 18–21 January 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 819–824. [Google Scholar]
- Wilkowska, W.; Ziefle, M. Privacy and data security in E-health: Requirements from the user’s perspective. Health Inform. J. 2012, 18, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Bajenaru, L.; Marinescu, I.A.; Dobre, C.; Prada, G.I.; Constantinou, C.S. Towards the development of a personalized healthcare solution for elderly: From user needs to system specifications. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Pal, D.; Funilkul, S.; Charoenkitkarn, N.; Kanthamanon, P. Internet-of-Things and Smart Homes for Elderly Healthcare: An End User Perspective. IEEE Access 2018, 6, 10483–10496. [Google Scholar] [CrossRef]
- Calvillo-Arbizu, J.; Roa-Romero, L.M.; Estudillo-Valderrama, M.A.; Salgueira-Lazo, M.; Aresté-Fosalba, N.; del Castillo-Rodríguez, N.L.; González-Cabrera, F.; Marrero-Robayna, S.; de-la Manzana, V.L.; Román-Martínez, I. User-centred design for developing e-Health system for renal patients at home (AppNephro). Int. J. Med. Inform. 2019, 125, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Clinically-Validated Integrated Support for Assistive Care and Lifestyle Improvement: The Human Link. Available online: https://https://vinci.ici.ro/ (accessed on 16 August 2021).
Abbreviation | Complete Name |
---|---|
WHO | World Health Organization |
ECG | Electrocardiogram |
BAN | Body Area Network |
IoMT | Internet of Medical Things |
IoT | Internet of Things |
HIoT | Health Internet of Things |
DNN | Deep Neural Networks |
NFC | Near Field Communication |
UWB | Ultra-Wide Band |
WAN | Wide Area Network |
LAN | Local Area Network |
PPG | Photoplethysmogram |
EMG | Electromyography |
IMU | Inertial Measurement Unit |
RFID | Radio Frequency Identification |
CMOS | Complementary Metal Oxide Semiconductor |
ITRS | International Technology Roadmap for Semiconductors |
FinFET | Fin Field Effect Transistor |
RISC | Reduced Instruction Set Computer |
MOPS | Million Operations Per Second |
CS | Compressive Sensing |
PRD | Percentage Root-mean square Difference |
ADC | Analog to Digital Converter |
LSB | Least Significant Bit |
MSB | Most Significant Bit |
SSIM | Structure Similarity Index Measure |
DRAM | Dynamic Random Access Memory |
PEH | Piezoelectric Energy Harvester |
TENG | Thermoelectric Nanogenerator |
TEG | Thermoelectric Generator |
IPT | Inductive Power Transfer |
WSN | Wireless Sensor Network |
MAC | Multiply-And-Accumulate |
CNN | Convolution Neural Networks |
DBN | Deep Belief Network |
RNN | Recurrent Neural Networks |
CPU | Central Processing Unit |
FPGA | Field Programmable Gate Array |
ASIC | Application Specific Integrated Circuit |
MPSoCs | Many-core systems-on-chip |
Parameter | Explanation | Typical Value/Value Range |
---|---|---|
S | scaling factor | 1.44 |
x | 1-D biomedical signal | NA |
N | Signal Dimension | 512 for ECG signal |
PRD | Percentage Root-mean square Difference | ≤10% |
Isometry constant | 0.25 | |
an arbitrary small and positive number | NA | |
RIP | restricted isometry property | NA |
Survey Work | Hardware Technology | Low-Power VLSI Design | Energy Harvesting | User Requirements |
---|---|---|---|---|
[8,10,12,13,14,15] | - | - | - | - |
[7,9] | - | - | ✓ | - |
[11] | ✓ | - | - | - |
This work | ✓ | ✓ | ✓ | ✓ |
Processor | Manufacturer | Key Applications |
---|---|---|
LPC1800 Series | NXP | building automation, IoT gateways Industrial IoT (IIoT), smart-grid, e-health |
CC2650 | TI | Home automation, proximity tags, tracking, smart metering, e-health, retail |
ST32-M | STMicroelectronics | HVAC, IIoT, e-health, m2m, VANET |
SmartFusion2 SoC FPGA Family | Microsemi | IIoT, e-health, IoT gateway |
Atmel SAM3 | Atmel | IIoT and smart-grid |
-minimization | Basis pursuit |
Quadratically constrained basis pursuit | |
Greedy methods | Orthogonal matching pursuit |
Compressive sampling matching pursuit | |
Thresholding methods | Basic thresholding |
Iterative hard thresholding | |
Hard thresholding pursuit |
Wearable Device | Voltage Rate in V | Power Consumption | Reference |
---|---|---|---|
Heart rate monitors | |||
MAX30102 pulse oximetry | 1.8–3.3 | <1 mW | [44] |
BH1790GLC optical heart rate sensor | 1.7–3.6 | 720 µW | [45] |
Blood glucose monitoring system | |||
IoT-based glucose monitoring device | 2.0 | 1mW | [5] |
Implantable RFID transducer for continuous glucose monitoring | 1.0–1.2 | 50 mu W | [46] |
Blood pressure sensors | |||
CMOS tactile sensor | 5 | 11.5 mW | [47] |
3-Axis Fully Integrated Capacitive Tactile Sensor | 1.8–3.3 | 1.2–4.6 mW | [48] |
Energy Sources | Power Density | Advantages | Disadvantages |
---|---|---|---|
Ambient light | 100 mW/cm (direct sun) | High power density | • Intermittent |
100 µW/cm (indoor) | • Determined by | ||
weather/lighting conditions | |||
Thermoelectric | 40 µW/cm | Widely available | • Limited power density |
Radio frequency | 1 µW/cm (ambient) | Widely available | • Power output depends on distance between |
harvester and RF source | |||
Vibration | 300 mW/cm | High power density | • Dependent on the vibration source properties |
(electrostatic–triboelectric conversion) | • Rectifying the interface is needed | ||
Human | 200 µW/cm | Light weight | • Power output dependent on activity |
(biomechanical piezoelectric) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Dhaou, I.; Ebrahimi, M.; Ben Ammar, M.; Bouattour, G.; Kanoun, O. Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation. Electronics 2021, 10, 2104. https://doi.org/10.3390/electronics10172104
Ben Dhaou I, Ebrahimi M, Ben Ammar M, Bouattour G, Kanoun O. Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation. Electronics. 2021; 10(17):2104. https://doi.org/10.3390/electronics10172104
Chicago/Turabian StyleBen Dhaou, Imed, Mousameh Ebrahimi, Meriam Ben Ammar, Ghada Bouattour, and Olfa Kanoun. 2021. "Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation" Electronics 10, no. 17: 2104. https://doi.org/10.3390/electronics10172104
APA StyleBen Dhaou, I., Ebrahimi, M., Ben Ammar, M., Bouattour, G., & Kanoun, O. (2021). Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation. Electronics, 10(17), 2104. https://doi.org/10.3390/electronics10172104