Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication and Characterization
2.2. The Control Method
3. Results and Discussion
3.1. Experiment Set 1: J-V Control in Dark
3.2. Experiment Set 2: J-V Control under Illumination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baig, H.; Kanda, H.; Asiri, A.M.; Nazeeruddin, M.K.; Mallick, T. Increasing efficiency of perovskite solar cells using low con-centrating photovoltaic systems. Sustain. Energy Fuels 2020, 4, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, H.; Wang, P.; Gurney, R.S.; Intaniwet, A.; Ruankham, P.; Choopun, S.; Liu, D.; Wang, T. Trap passivation and efficiency improvement of perovskite solar cells by a guanidinium additive. Mater. Chem. Front. 2019, 3, 1357–1364. [Google Scholar] [CrossRef]
- Photovoltaic Research—Best Research-Cell Efficiency Chart. Available online: http://www.nrel.gov/pv/cell-efficiency.html (accessed on 6 June 2020).
- Oxford, P.V. Perovskite Solar Cell Achieves 28% Efficiency. Available online: https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency (accessed on 16 November 2020).
- Zhao, X.; Park, N.-G. Stability Issues on Perovskite Solar Cells. Photonics 2015, 2, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Ibn-Mohammed, T.; Koh, S.; Reaney, I.; Acquaye, A.; Schileo, G.; Mustapha, K.; Greenough, R. Perovskite solar cells: An inte-grated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sust. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Domanski, K.; Alharbi, E.A.; Hagfeldt, A.; Grätzel, M.; Tress, W. Systematic investigation of the impact of operation conditions on the degra-dation behaviour of perovskite solar cells. Nat. Energy 2018, 3, 61–67. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Barbaud, J.; Kong, W.; Cui, D.; Chen, H.; Yang, X.; Han, L. Stabilizing heterostructures of soft perovskite semiconductors. Science 2019, 365, 687–691. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Di Giacomo, F.; Galagan, Y.; Rahmany, S.; Etgar, L.; Katz, E.A.; Visoly-Fisher, I. Bias-Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight. Sol. RRL 2020, 4, 1900335. [Google Scholar]
- Ahn, N.; Kwak, K.; Jang, M.S.; Yoon, H.; Lee, B.Y.; Lee, J.-K.; Pikhitsa, P.V.; Byun, J.; Choi, M. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 2016, 7, 13422. [Google Scholar] [CrossRef] [Green Version]
- Kwak, K.; Lim, E.; Ahn, N.; Heo, J.; Bang, K.; Kim, S.K.; Choi, M. An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. Nanoscale 2019, 11, 11369–11378. [Google Scholar] [CrossRef]
- Mahesh, S.; Ball, J.M.; Oliver, R.D.J.; McMeekin, D.P.; Nayak, P.K.; Johnston, M.B.; Snaith, H.J. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 2020, 13, 258–267. [Google Scholar] [CrossRef]
- Jin, H.; Debroye, E.; Keshavarz, M.; Scheblykin, I.G.; Roeffaers, M.B.J.; Hofkens, J.; Steele, J.A. It’s a trap! on the nature of local-ised states and charge trapping in lead halide perovskites. Mater. Horiz. 2020, 7, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118–2127. [Google Scholar] [CrossRef]
- Chen, S.; Wen, X.; Sheng, R.; Huang, S.; Deng, X.; Green, M.; Ho-Baillie, A. Mobile ion induced slow carrier dynamics in organ-ic–inorganic perovskite CH3 NH3 PbBr3. ACS Appl. Mater. Interfaces 2016, 8, 5351–5357. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Sayyad, M.H.; Khan, K.; Guo, K.; Shen, F.; Sun, J.; Tareen, A.K.; Gong, Y.; Guo, Z. Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies 2020, 13, 5092. [Google Scholar] [CrossRef]
- Domínguez-Pumar, M.; Bheesayagari, C.R.; Gorreta, S.; Lopez-Rodriguez, G.; Martin, I.; Blokhina, E.; Pons-Nin, J.; López, G. Charge Trapping Control in MOS Capacitors. IEEE Trans. Ind. Electron. 2016, 64, 3023–3029. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H.J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 2014, 7, 1142–1147. [Google Scholar] [CrossRef]
- Martinez-Denegri, G.; Colodrero, S.; Kramarenko, M.; Martorell, J. All-Nanoparticle SnO2/TiO2 Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 5548–5556. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Pockett, A.; Eperon, G.E.; Sakai, N.; Snaith, H.J.; Peter, L.M.; Cameron, P.J. Microseconds, milliseconds and seconds: Deconvoluting the dynamic behaviour of planar perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 5959–5970. [Google Scholar] [CrossRef] [Green Version]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Gratzel, M. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Besleaga, C.; Tomulescu, A.G.; Palici, A.; Pintilie, L.; Manolescu, A.; Pintilie, I. How measurement protocols in-fluence the dynamic J-V characteristics of perovskite solar cells. Solar Energy 2018, 173, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, A.; Parikh, N.; Kumar, P.; Kumar, M.; Prochowicz, D.; Kalam, A.; Tavakoli, M.M.; Yadav, P. Changes in the Elec-trical Characteristics of Perovskite Solar Cells with Aging Time. Molecules 2020, 25, 2299. [Google Scholar] [CrossRef] [PubMed]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef]
- Almora, O.; Aranda, C.; Zarazua, I.; Guerrero, A.; Garcia-Belmonte, G. Non capacitive hysteresis in perovskite solar cells at room temperature. ACS Energy Lett. 2016, 1, 209–215. [Google Scholar] [CrossRef]
- Almora, O.; Cho, K.T.; Aghazada, S.; Zimmermann, I.; Matt, G.J.; Brabec, C.J.; Nazeeruddin, M.K.; Garcia-Belmonte, G. Dis-cerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy 2018, 48, 63–72. [Google Scholar] [CrossRef]
- Torres, C.I.; Marcus, A.K.; Parameswaran, P.; Rittmann, B.E. Kinetic Experiments for Evaluating the Nernst−Monod Model for Anode-Respiring Bacteria (ARB) in a Biofilm Anode. Environ. Sci. Technol. 2008, 42, 6593–6597. [Google Scholar] [CrossRef]
- Garcia-Belmonte, G.; Bisquert, J. Distinction between capacitive and non-capacitive hysteretic currents in operation and degradation of perovskite solar cells. ACS Energy Lett. 2016, 1, 683–688. [Google Scholar] [CrossRef]
- Calado, P.; Burkitt, D.; Yao, J.; Troughton, J.; Watson, T.M.; Carnie, M.J.; Telford, A.M.; O’Regan, B.C.; Nelson, J.; Barnes, P.R. Identifying dominant recombination mechanisms in perovskite solar cells by measuring the transient ideality factor. Phys. Rev. Appl. 2019, 11, 044005. [Google Scholar] [CrossRef] [Green Version]
- Norsworthy, S.; Schreier, R.; Temes, G. Delta-Sigma Data Converters: Theory, Design, and Simulation; IEEE Press: New York, NY, USA, 1997. [Google Scholar]
- Aziz, P.M.; Sorensen, H.V.; Der Spiegel, J.V. An overview of sigma-delta converters. IEEE Signal Process. Mag. 1996, 13, 61–84. [Google Scholar] [CrossRef]
- Gorreta, S.; Pons-Nin, J.; Blokhina, E.; Feely, O.; Dominguez-Pumar, M. Delta-Sigma Control of Dielectric Charge for Contact-less Capacitive MEMS. IEEE J. Microelectromech. Syst. 2014, 23, 829–841. [Google Scholar] [CrossRef]
- Gorreta, S.; Pons-Nin, J.; Blokhina, E.; Dominguez, M.; Domínguez-Pumar, M. A Second-Order Delta-Sigma Control of Dielectric Charge for Contactless Capacitive MEMS. J. Microelectromech. Syst. 2015, 24, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Correa-Baena, J.-P.; Anaya, M.; Lozano, G.; Tress, W.; Domanski, K.; Saliba, M.; Matsui, T.; Jacobsson, T.J.; Calvo, M.E.; Abate, A.; et al. Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement. Adv. Mater. 2016, 28, 5031–5037. [Google Scholar] [CrossRef] [PubMed]
Dark, Forward | Dark, Reverse | Light, Forward | Light, Reverse | |
---|---|---|---|---|
n | 2 | 2 | 4.2 | 1.6 |
J0 [pA/cm2] | 2 | 1.67 | 1.67 | 2.5 |
RS [Ω] | 73 | 170 | 80 | 112 |
Rsh [MΩ] | 1 | 2 | 0.01 | 0.04 |
C [µF/cm2] | 7.6 | 7.6 | 380 | 380 |
Jph [mA/cm2] | 0.057 | 0.057 | 22 | 22 |
Jmax [mA/cm2] | 0.067 | 83 | 83 | 1.7 × 10−9 |
VA [V] | 0.8 | 1.2 | 1.02 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bheesayagari, C.R.; Martínez-Denegri, G.; Orpella, A.; Pons-Nin, J.; Bermejo, S.; Alcubilla, R.; Martorell, J.; Domínguez-Pumar, M. Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics 2021, 10, 121. https://doi.org/10.3390/electronics10020121
Bheesayagari CR, Martínez-Denegri G, Orpella A, Pons-Nin J, Bermejo S, Alcubilla R, Martorell J, Domínguez-Pumar M. Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics. 2021; 10(2):121. https://doi.org/10.3390/electronics10020121
Chicago/Turabian StyleBheesayagari, Chenna Reddy, Guillermo Martínez-Denegri, Albert Orpella, Joan Pons-Nin, Sandra Bermejo, Ramon Alcubilla, Jordi Martorell, and Manuel Domínguez-Pumar. 2021. "Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop" Electronics 10, no. 2: 121. https://doi.org/10.3390/electronics10020121
APA StyleBheesayagari, C. R., Martínez-Denegri, G., Orpella, A., Pons-Nin, J., Bermejo, S., Alcubilla, R., Martorell, J., & Domínguez-Pumar, M. (2021). Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics, 10(2), 121. https://doi.org/10.3390/electronics10020121