Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test
Abstract
:1. Introduction
2. Test Object and Research Method
2.1. Test Object
- (1)
- Rated voltage: 42 kV;
- (2)
- Nominal discharge current: 10 kA;
- (3)
- Lightning impulse residual voltage under nominal discharge current: <105 kV;
- (4)
- DC1mA reference voltage: >58 kV;
- (5)
- Continuous operating voltage: 34 kV;
- (6)
- Capacitance of each varistor: 530 pF;
- (7)
- 2 ms square wave current capacity: 500 A.
2.2. Research Methodology
3. Macroscopic Characteristics of Roof Arrester in Different States
3.1. Overall Electrical Performance
3.2. Appearance Characteristics of Varistors
3.3. Electrical Performance of Varistors
4. Deterioration Mechanism of Varistors
4.1. SEM Test of Varistors
4.2. EDS Test of Varistors
4.3. Symptoms of Varistor Deterioration Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.-W.; Kim, N.-H.; Kil, G.-S. Assessment of MOV Deterioration under Energized Conditions. Energies 2020, 13, 4018. [Google Scholar] [CrossRef]
- Xu, Z.R.; Tang, J.; Chen, D.Z.; Liang, Z.Y.; Xi, Y.; Liu, G. Analysis of 10 kV Distribution Arrester Common Fault Types. Insul. Surge Arresters 2012, 3, 62–66. [Google Scholar]
- Zhao, W.Y.; Lu, W.J.; Chen, Z. Cause analysis and improvement of the crack in lo-comotive arrester. Railw. Locomot. Mot. Car 2019, 4, 44–46. [Google Scholar]
- He, J.H.; Liu, J.; Hu, J.; Long, W.C. Development of ZnO varistors in metal oxide arrestors utilized in ultra high voltage systems. High. Volt. Eng. 2011, 37, 634–643. [Google Scholar]
- He, J. Metal Oxide Varistors: From Micorstructure to Macro-Characteristics; Tsinghua University Press: Beijing, China, 2019. [Google Scholar]
- Greuter, F. ZnO varistors: From grain boundaries to power applications. In Oxide Electronics; Ray, A., Ed.; Chapter 8; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Ganesh, K.S. A review of zinc oxide varis-tors for surge arrester. In Proceedings of the 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9 February 2018; pp. 470–474. [Google Scholar]
- Baraki, R. Elektromechanisches Verhalten von ZnO Varistoren; Technische Uni-versität Darmstadt: Darmstadt, Germany, 2016. [Google Scholar]
- Wang, L.Y.; Ren, X.; Huang, H. The Development Trends of Zinc Oxide Var-istor Used in Surge Arrester both in China and Abroad[J/OL]. Insul. Surge Arresters 2020, 1–15. Available online: http://kns.cnki.net/kcms/detail/61.1129.TM.20200817.1501.002.html (accessed on 27 October 2021).
- Liu, W.; Lu, W.; Wei, X.; Xia, G. Simulation study on the technology of interphase interference and spatial interference in metal oxide arrester (MOA) on-line test. In Proceedings of the 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, 19–22 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Topcagic, Z. Varistor Electrical Properties: Microstructural Effects. In Encyclopedia of Materials: Technical Ceramics Glasses; Pomeroy, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 3, pp. 254–271. [Google Scholar]
- Eda, K. Destruction mechanism of ZnO varis-tors due to high currents. J. Appl. Phys. 1984, 56, 2948–2955. [Google Scholar] [CrossRef]
- Späck-Leigsnering, Y. Electrothermal Modeling, Simulation and Optimization of Surge Arresters. Ph.D Thesis, Darmstadt University, Darmstadt, Germany, 2019. [Google Scholar]
- Zhang, C.; Xing, H.; Li, P.; Li, C.; Lv, D.; Yang, S. An Experimental Study of the Failure Mode of ZnO Varistors Under Multiple Lightning Strokes. Electronics 2019, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Li, S.T.; He, J.Q.; Lin, J.J.; Wang, H.; Liu, W.F.; Liao, Y.L. Electrical-Thermal Failure of Metal–Oxide Arrester by Successive Impulses. In IEEE Transactions on Power Delivery; IEEE: Piscataway, NJ, USA, 2016; Volume 31, pp. 2538–2545. [Google Scholar] [CrossRef]
- Chen, X.C. Study on micro morpholo-gy of 2ms square wave burst failure of ZnO varistor for arrester. Insul. Surge Arresters 1997, 3, 32–34. [Google Scholar]
- Sun, J. Leakage current characteristics and ageing assessment technology of roof arrester under ultra harmonics overvoltage. High. Volt. 2021, 1–12. [Google Scholar] [CrossRef]
- Yang, Z.P. Study on Thermal Runaway of 110 kV Metal Oxide Arrester; Xiamen University of Technology: Xiamen, China, 2020. [Google Scholar]
- Lin, C.B.; Liao, Y.L.; Li, R.H. Research on Degradation Performance of 110 kV Full-scale ZnO MOA Under Lightning Impulses. South. Power Syst. Technol. 2015, 9, 40–45. [Google Scholar]
- Wang, T.; Zeng, Y.J.; Li, Y. Fault Types of MOA and Its Fault Analysis. Insul. Mater. 2015, 48, 47–52. [Google Scholar]
- Mao, H.P. Research on Joint Detection Technology of Metal Oxide Arrester Based on Leakage Current and Infrared Thermal Image; North China Electric Power University: Beijing, China, 2018. [Google Scholar]
- Chen, X.C. Research on Surge Degradation of Metal Oxide Surge Arrester Based on Leakage Current Harmonic Analysis; Southwest Jiaotong University: Chengdu, China, 2018. [Google Scholar]
- Wang, G.M.; Kim, W.-H.; Lee, J.-H.; Kil, G.-S. Condition monitoring and deterioration analysis of metal oxide varistor. J. Electr. Eng. 2018, 69, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Akagi, M.; Tanaka, H.; Imamura, H. Development of a detection device for deteriorated ZnO surge arresters at AC traction substations. Electr. Eng. Jpn. 2018, 204, 10–19. [Google Scholar] [CrossRef]
- Takido, Y. Development of leakage current monitoring device for arrester. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, Z.X. Study on state judgment method of metal oxide arrester without gaps in AC power system. In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM); IEEE: Piscataway, NJ, USA, 2018; pp. 578–584. [Google Scholar] [CrossRef]
- Liang, F.G. Accident Analysis of Ar-rester Breakdown due to Transmission Line Broken. Insul. Surge Arresters 2020, 2, 137–140. [Google Scholar]
- Lin, S.J.; Li, H.; Li, G.X. Elec-trical Performance of 110kV Compound Dis-charge Gap Lightning Arrester. Proc. CSEE 2017, 37, 2790–2797. [Google Scholar]
- Kai, B.I.; Weijiang, C.H.; Haibin, S.H. Development of Metal Oxide Surge Ar-rester With Series Gap for Traction Power Supply System Catenary of High-speed Elec-trified Railway. Proc. CSEE 2013, 33, 200–209. [Google Scholar]
- Hinrichsen, V. Metal.-Oxide Surge Arresters in High.-Voltage Power Systems Fundamentals, 3rd ed.; Siemens AGL: Erlangen, Germany, 2012. [Google Scholar]
- Vrhunc, J. Surge protective device modules including integral thermal disconnect and methods including same. United States Patent No. US 10,340,110 B2, 2 July 2019. [Google Scholar]
- Tsovilis, T.E. DC overload behavior of low-voltage varistor-based surge protective devices. IEEE Trans. Power Deliv. 2020, 35, 2541–2543. [Google Scholar] [CrossRef]
- Kristainsson, J. Line surge arresters-contribution to power quality: Line side protection, Presentation to ABB Africa Channel Partner Event. Available online: https://new.abb.com/docs/librariesprovider77/default-document-library/presentation---johan-kristiansson---transmission-line-surge-arresters.pdf?sfvrsn=2 (accessed on 18 October 2021).
Status | U1mA /kV | [email protected]1mA /μA | Ur /kV | IX/μA | IR/μA |
---|---|---|---|---|---|
Normal | 60.6 | 7.0 | 104.4 | 485.0 | 90.0 |
Defective | 62.3 | 7.5 | 104.1 | 498.0 | 105.0 |
Status | U1mA/kV | I0.75U1mA/μA | IX/μA | IR/μA | |
---|---|---|---|---|---|
Normal | Factory value | 60.6 | 7.0 | 485.0 | 90.0 |
Test value | 60.7 | 8.7 | 525.0 | 102.8 | |
Rate/% | 0.2 | 24.3 | 8.2 | 14.2 | |
Defective | Factory value | 62.3 | 7.5 | 498.0 | 105.0 |
Test value | 58.3 | 157.0 | 576.0 | 257.0 | |
Rate/% | 6.4 | 1993.3 | 15.7 | 144.8 |
No. | U1mA/kV | Ur/kV | ||||
---|---|---|---|---|---|---|
Factory Value | Test Value | Rate/% | Factory Value | Test Value | Rate/% | |
1 | 5.2 | 5.1 | 1.5 | 8.7 | 8.7 | 0.4 |
2 | 5.4 | 5.3 | 0.7 | 9.0 | 9.0 | 0.8 |
3 | 4.9 | 4.9 | 0.6 | 8.4 | 8.4 | 0.1 |
4 | 5.2 | 5.2 | 1.2 | 8.7 | 8.7 | 0.8 |
5 | 5.4 | 5.3 | 1.3 | 8.9 | 8.8 | 0.3 |
6 | 4.9 | 4.9 | 0.8 | 8.4 | 8.4 | 0.2 |
7 | 5.4 | s5.3 | 1.1 | 8.9 | 8.9 | 0.1 |
8 | 5.2 | 5.2 | 1.0 | 8.7 | 8.7 | 0.0 |
9 | 5.2 | 5.2 | 0.8 | 8.7 | 8.7 | 0.3 |
10 | 5.2 | 5.2 | 0.4 | 8.7 | 8.8 | 0.7 |
11 | 5.4 | 5.3 | 1.1 | 8.9 | 8.9 | 0.5 |
12 | 5.2 | 5.2 | 0.8 | 9.0 | 8.8 | 2.5 |
Total | 62.6 | 62.1 | 0.8 | 104.7 | 104.7 | 0.1 |
No. | Test Program | Breakdown (Y/N) | Passed (Y/N) |
---|---|---|---|
1 | 2 ms square impulse | N | Y |
2 | 2 ms square impulse | N | Y |
3 | First high current shock | Y | N |
Second high current shock | / | ||
4 | First high current shock | N | N |
Second high current shock | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, S.; Dong, X.; Liu, M.; Ou, Q.; Lv, F. Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test. Electronics 2021, 10, 2624. https://doi.org/10.3390/electronics10212624
Zhang Q, Wang S, Dong X, Liu M, Ou Q, Lv F. Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test. Electronics. 2021; 10(21):2624. https://doi.org/10.3390/electronics10212624
Chicago/Turabian StyleZhang, Qizhe, Shenghui Wang, Xinghao Dong, Mingliang Liu, Qi Ou, and Fangcheng Lv. 2021. "Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test" Electronics 10, no. 21: 2624. https://doi.org/10.3390/electronics10212624
APA StyleZhang, Q., Wang, S., Dong, X., Liu, M., Ou, Q., & Lv, F. (2021). Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test. Electronics, 10(21), 2624. https://doi.org/10.3390/electronics10212624