Robust Single-Image Dehazing
Abstract
:1. Introduction
- A novel sky detection method that takes advantage of a region-based and a boundary-based sky segmentation is proposed to detect the sky with various shapes taking into account the characteristics of the road scene.
- Sky and white-object probabilities in local patches are introduced to prevent distortions in a large sky area or a bright white object.
2. Related Work
2.1. Dark Channel Prior
2.2. Sky Detection
2.2.1. A Region-Based Approach
2.2.2. A Boundary-Based Approach
3. Proposed Method
3.1. Sky Probability and Atmospheric Light
3.1.1. Sky Region Detection with Region-Based Approach
3.1.2. Sky Region Detection with Boundary-Based Approach
3.1.3. Sky Probabilities Calculation and Atmospheric Light Estimation in the Sky Region
3.2. White-Object Probability in the Non-Sky Region
3.3. Haze-Free Image Recovery
4. Experimental Results
4.1. Synthetic Images Experiment
4.2. Natural Images Experiment
4.3. Experiments for ADAS Application
4.4. Computational Complexity
5. Conclusions
Funding
Conflicts of Interest
References
- Xu, Y.; Wen, J.; Fei, L.; Zhang, Z. Review of Video and Image Defogging Algorithms and Related Studies on Image Restoration and Enhancement. IEEE Access 2015, 4, 165–188. [Google Scholar] [CrossRef]
- Tarel, J.-P.; Hautiere, N.; Caraffa, L.; Cord, A.; Halmaoui, H.; Gruyer, D. Vision Enhancement in Homogeneous and Heterogeneous Fog. IEEE Intell. Transp. Syst. Mag. 2012, 4, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based vision through haze. Appl. Opt. 2003, 42, 511–525. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Kopf, J.; Neubert, B.; Chen, B. Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhang, W.; Ren, L.; Ju, H.; Qu, E. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion. Appl. Opt. 2016, 55, 8221. [Google Scholar] [CrossRef] [PubMed]
- Ancuti, C.O. Single Image Dehazing by Multi-Scale Fusion. IEEE Trans. Image Process. 2013, 22, 3271–3282. [Google Scholar] [CrossRef] [PubMed]
- Fattal, R. Single image dehazing. Proc. ACM Trans. Graph. (TOG). 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Tan, R.T. Visibility in Bad Weather from a Single Image. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient Image Dehazing with Boundary Constraint and Contextual Regularization. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 617–624. [Google Scholar] [CrossRef]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Non-Local Image Dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.-H. Single Image Dehazing via Multi-scale Convolutional Neural Networks. Eur. Conf. Comput. Vis. 2016, 9906, 154–169. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4780–4788. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced Pix2pix Dehazing Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8152–8160. [Google Scholar] [CrossRef]
- Fu, H.; Wu, B.; Shao, Y. Multi-Feature-Based Bilinear CNN for Single Image Dehazing. IEEE Access 2019, 7, 74316–74326. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, V.M. Densely Connected Pyramid Dehazing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 7313–7322. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ren, G.; Jiang, L.; Quan, T. Single Image Dehazing Algorithm Based on Sky Region Segmentation. Inf. Technol. J. 2013, 12, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Wang, M. Single Image Dehazing via Large Sky Region Segmentation and Multiscale Opening Dark Channel Model. IEEE Access 2017, 5, 8890–8903. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, C.; Guo, Z.; Sun, Z. A Region-Wised Medium Transmission Based Image Dehazing Method. IEEE Access 2017, 5, 1735–1742. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; She, C.; Wang, S.; Zhang, Z. Saliency-driven single image haze removal method based on reliable airlight and transmission. J. Electron. Imag. 2018, 27, 023038. [Google Scholar] [CrossRef]
- Irfanullah, K.H.; Sattar, Q.; Sadaqat-ur-Rehman, A.A. An efficient approach for sky detection. IJCSI Int. J. Comput. Sci. 2013, 10, 1694–1814. [Google Scholar]
- Shen, Y.; Wang, Q. Sky Region Detection in a Single Image for Autonomous Ground Robot Navigation. Int. J. Adv. Robot. Syst. 2013, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Susstrunk, S. Superpixels and Polygons Using Simple Non-Iterative Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 4651–4660. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.U.; Chung, S.Y.; Park, R.-H. A comparative performance study of several global thresholding techniques for segmentation. Comput. Vision Graph. Image Process. 1990, 52, 171–190. [Google Scholar] [CrossRef]
- Hordley, S.; Finlayson, G. Re-evaluating colour constancy algorithms. Int. Conf. Pattern Recognit. 2004, 1, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Outdoor Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 754–762. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. Mar. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. 2015 Twenty First Natl. Conf. Commun. (NCC) 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Teoh, E.K.; Shen, D. Lane detection and tracking using B-Snake. Image Vis. Comput. 2004, 22, 269–280. [Google Scholar] [CrossRef]
Dataset | Metric | He et al. | Meng et al. | Berman et al. | Zhu et al. | Ren et al. | Cai et al. | Proposed |
---|---|---|---|---|---|---|---|---|
O-Haze (45 samples) | PSNR | 13.96 | 15.13 | 15.01 | 15.36 | 17.17 | 15.06 | 16.32 |
SSIM | 0.3 | 0.34 | 0.4 | 0.33 | 0.38 | 0.36 | 0.44 | |
SOTS-Outdoor (500 samples) | PSNR | 14.81 | 15.57 | 18.08 | 18.25 | 19.61 | 22.92 | 22.33 |
SSIM | 0.7549 | 0.783 | 0.8026 | 0.7867 | 0.8633 | 0.8886 | 0.8999 | |
HSTS (10 samples) | PSNR | 15.09 | 15.16 | 17.63 | 19.84 | 18.67 | 24.48 | 24.22 |
SSIM | 0.7656 | 0.7414 | 0.7933 | 0.8157 | 0.8174 | 0.9216 | 0.9017 |
Metric | He et al. | Meng et al. | Berman et al. | Zhu et al. | Ren et al. | Cai et al. | Proposed |
---|---|---|---|---|---|---|---|
BRISQUE | 26.73 | 26.92 | 26.92 | 26.93 | 25.58 | 26.21 | 24.94 |
NIQE | 3.211 | 3.28 | 3.589 | 3.2 | 3.186 | 3.206 | 3.191 |
PIQE | 42.27 | 41.6 | 46.47 | 42.41 | 42.37 | 42.49 | 41.09 |
Image Resolution | He et al. | Meng et al. | Berman et al. | Zhu et al. | Ren et al. | Cai et al. | Proposed |
---|---|---|---|---|---|---|---|
640 × 480 | 1.360 s | 2.986 s | 2.638 s | 0.691 s | 1.855 s | 1.619 s | 0.232 s |
1024 × 768 | 3.536 s | 4.033 s | 4.140 s | 1.359 s | 2.587 s | 3.576 s | 0.358 s |
1280 × 720 | 4.098 s | 3.678 s | 4.489 s | 1.750 s | 2.907 s | 4.373 s | 0.382 s |
1920 × 1080 | 9.534 s | 6.825 s | 8.149 s | 3.182 s | 6.432 s | 9.872 s | 0.438 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C. Robust Single-Image Dehazing. Electronics 2021, 10, 2636. https://doi.org/10.3390/electronics10212636
Kim C. Robust Single-Image Dehazing. Electronics. 2021; 10(21):2636. https://doi.org/10.3390/electronics10212636
Chicago/Turabian StyleKim, Changwon. 2021. "Robust Single-Image Dehazing" Electronics 10, no. 21: 2636. https://doi.org/10.3390/electronics10212636
APA StyleKim, C. (2021). Robust Single-Image Dehazing. Electronics, 10(21), 2636. https://doi.org/10.3390/electronics10212636