A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input
Abstract
:1. Introduction
2. Electro-Thermal Model of LIBs
2.1. Power Input Equivalent Circuit Model of LIBs
2.2. Thermal Model of LIBs
3. Experiment and Model Parameter Identification of LIBs
4. Accuracy Verification and Result Analysis of the Electro-Thermal Model
4.1. Model Accuracy Verification under Working Condition 1
4.2. Model Accuracy Verification under Working Condition 2
4.3. Model Accuracy Verification under Operating Condition 3
4.4. Result Analysis
- With increase of the ambient temperature, the PIET model and the PIIR model will have gradually improved accuracy due to the decrease in internal resistance and accurate parameter identification;
- When the temperature goes down below zero, the performance parameters of the battery increase sharply at the same temperature gradient, and the time constant reflecting the battery polarization decreases sharply. Therefore, the polarization voltage described by the two RC originals increases sharply. In addition, temperature rise of the battery per se in low temperature conditions has a greater impact on electrical performance than normal temperature. Therefore, the voltage and current estimation accuracy of the PIET model is significantly higher than that of the PIIR model under conditions 1 and 2.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Wu, D.; Guo, F.; Field, F.R.; Kleine, R.D.; Kim, H.C.; Wallington, T.J.; Kirchain, R.E. Regional heterogeneity in the emissions benefits of electrified and lightweighted light-duty vehicles. Environ. Sci. Technol. 2019, 53, 10560–10570. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.H.; Wang, J.Q.; Lin, Y.G.; Si, Y.L.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 2017, 76, 865–871. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Hu, J.; Morais, H.; Sousa, T.; Lind, T. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renew. Sustain. Energy Rev. 2016, 56, 1207–1226. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yin, C.; Wu, H.; Zhang, X. A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 2. Modeling and parameter estimation. J. Power Sources 2017, 352, 258–271. [Google Scholar]
- Li, J.; Wang, L.; Lyu, C.; Liu, E.; Xing, Y.; Pecht, M. A parameter estimation method for a simplified electrochemical model for Li-ion batteries. Electrochim. Acta 2018, 275, 50–58. [Google Scholar] [CrossRef]
- Zou, C.; Hu, X.; Wei, Z.; Wik, T.; Egardt, B. Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Trans. Ind. Electron. 2017, 65, 6635–6645. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. Energy 2020, 203, 117852. [Google Scholar] [CrossRef]
- Sheng, H.; Xiao, J. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine. J. Power Sources 2015, 281, 131–137. [Google Scholar] [CrossRef]
- Nejad, S.; Gladwin, D.T.; Stone, D.A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. J. Power Sources 2016, 316, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Jeong, H.; Han, C.; Jin, S.; Lim, J.H.; Oh, J. State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model. Comput. Chem. Eng. 2012, 41, 1–9. [Google Scholar] [CrossRef]
- Zhu, Y.; Tatarchuk, B.J.; Zhu, W.H. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application. Energy Convers. Manag. 2011, 52, 2794–2799. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Li, S.; Fu, C.; Qin, D.; Li, Z. Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 2018, 165, 153–163. [Google Scholar] [CrossRef]
- Yi, J.; Lee, J.; Shin, C.B.; Han, T.; Park, S. Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling. J. Power Sources 2015, 277, 379–386. [Google Scholar] [CrossRef]
- Richardson, R.R.; Zhao, S.; Howey, D.A. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling. J. Power Sources 2016, 326, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.P.; Arnold, S.; Loges, A.; Werner, D.; Wetzel, T.; Ivers-Tiffée, E. Measurement of the internal cell temperature via impedance: Evaluation and application of a new method. J. Power Sources 2013, 243, 110–117. [Google Scholar] [CrossRef]
- Zhu, J.G.; Sun, Z.C.; Wei, X.Z.; Dai, H.F. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement. J. Power Sources 2015, 274, 990–1004. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 1985, 132, 5. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Perez, H.E.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y.; Castanier, M.P. A lumped-parameter electro-thermal model for cylindrical batteries. J. Power Sources 2014, 257, 1–11. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, L.; Zhu, J.; Wei, X.; Sun, Z. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries. J. Power Sources 2015, 293, 351–365. [Google Scholar] [CrossRef]
- Chen, L.; Hu, M.; Cao, K.; Li, S.; Su, Z.; Jin, G.; Fu, C. Core temperature estimation based on electro-thermal model of lithium-ion batteries. Int. J. Energy Res. 2020, 44, 5320–5333. [Google Scholar] [CrossRef]
- Qi, X.; Wang, Q.; Xie, F.; Cao, J.; Chen, L.; Zhan, Q. Researching of efficiency optimized torque distribution based on front and rear wheel independently drive electrical vehicle. In Proceedings of the 19th International Conference on Electrical Machines and Systems (ICEMS 2016), Chiba, Japan, 13–16 November 2016; pp. 1–6. [Google Scholar]
- Xu, Y.; Hu, M.; Fu, C.; Cao, K.; Su, Z.; Yang, Z. State of Charge Estimation for Lithium-Ion Batteries Based on Temperature-Dependent Second-Order RC Model. Electronics 2019, 8, 1012. [Google Scholar] [CrossRef] [Green Version]
- Torchio, M.; Magni, L.; Gopaluni, R.B.; Braatz, R.D.; Raimondo, D.M. Lionsimba: A matlab framework based on a finite volume model suitable for li-ion battery design, simulation, and control. J. Electrochem. Soc. 2016, 163, A1192–A1205. [Google Scholar] [CrossRef]
Model | Nominal Capacity | Rated Voltage | Charge Cut-Off Voltage | Discharge Cut-Off Voltage |
---|---|---|---|---|
18650 | 3350 mAh | 3.6 V | 4.2 V | 2.5 V |
Parameter | Ri | Ro | Cc | Cs |
---|---|---|---|---|
Value | 1.83 K/W | 4.03 K/W | 67 J/K | 3.12 J/K |
Sequence | Condition 1 | Condition 2 | Condition 3 | Condition 4 | Condition 5 | Condition 6 | Condition 7 |
---|---|---|---|---|---|---|---|
Power | P1 | P1 | P2 | P2 | P2 | P2 | P2 |
Ambient temperature | −15 °C | −5.6 °C | 4.1 °C | 16 °C | 25.5 °C | 34.5 °C | 44 °C |
Condition Sequence | RMSE1 (mV) | RMSE2 (mV) | ΔRMSE1 (mV) | RMSE3 (mA) | RMSE4 (mA) | ΔRMSE2 (mA) | RMSE5 (°C) |
---|---|---|---|---|---|---|---|
Condition 1 | 19.38 | 39.38 | 20.0 | 6.75 | 9.79 | 3.04 | 0.14 |
Condition 2 | 18.12 | 34.63 | 16.51 | 3.62 | 8.56 | 4.94 | 0.12 |
Condition 3 | 17.43 | 18.61 | 1.18 | 9.51 | 10.61 | 1.1 | 0.18 |
Condition 4 | 13.72 | 16.37 | 2.65 | 6.60 | 6.10 | −0.5 | 0.19 |
Condition 5 | 13.64 | 19.26 | 5.62 | 4.52 | 7.93 | 3.41 | 0.16 |
Condition 6 | 7.59 | 10.68 | 3.09 | 3.62 | 4.44 | 1.18 | 0.12 |
Condition 7 | 8.15 | 8.92 | 0.77 | 4.46 | 3.48 | −0.98 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Hu, M.; Chen, L.; Jin, G.; Liao, S.; Fu, C.; Wang, D.; Cao, K. A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input. Electronics 2021, 10, 2753. https://doi.org/10.3390/electronics10222753
Huang B, Hu M, Chen L, Jin G, Liao S, Fu C, Wang D, Cao K. A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input. Electronics. 2021; 10(22):2753. https://doi.org/10.3390/electronics10222753
Chicago/Turabian StyleHuang, Bo, Minghui Hu, Lunguo Chen, Guoqing Jin, Shuiping Liao, Chunyun Fu, Dongyang Wang, and Kaibin Cao. 2021. "A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input" Electronics 10, no. 22: 2753. https://doi.org/10.3390/electronics10222753
APA StyleHuang, B., Hu, M., Chen, L., Jin, G., Liao, S., Fu, C., Wang, D., & Cao, K. (2021). A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input. Electronics, 10(22), 2753. https://doi.org/10.3390/electronics10222753