An Imaging Enhancement Method for a Terahertz Rotation Mirror Imaging System Based on a Scale-Recurrent Network
Abstract
:1. Introduction
2. Theory
2.1. Imaging Principle of THz Rotation Mirror Imaging System
2.2. Network Structure
2.3. Training Set Creation
3. Experimental Setup and Implementation Details
3.1. THz Rotation Mirror Imaging Experiment
3.2. THz Raster-Scan Imaging Experiment
3.3. Implementation Details of Network Training and Image Predicting
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.C.; Xu, J. Introduction to THz Wave Photonics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–2. [Google Scholar]
- Zhao, L.; Hao, Y.-H.; Peng, R.-Y. Advances in the biological effects of terahertz wave radiation. Mil. Med. Res. 2014, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.Y.; Cui, H.L.; Shi, C.C.; Han, X.H.; Zhang, Z.Y.; Li, W.; Ma, Y.T.; Zheng, Y.; Zhang, S.N. Experimental Study of PMI Foam Composite Properties in Terahertz. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2015, 35, 3319–3324. [Google Scholar] [PubMed]
- Zhang, D.D.; Ren, J.J.; Gu, J.; Li, L.J.; Zhang, J.Y.; Xiong, W.H.; Zhong, Y.F.; Zhou, T.Y. Nondestructive testing of bonding defects in multilayered ceramic matrix composites using THz time domain spectroscopy and imaging. Compos. Struct. 2020, 251, 112624. [Google Scholar] [CrossRef]
- Chan, W.; Deibel, J.; Mittleman, D. Imaging with terahertz radiation. Rep. Prog. Phys. 2007, 70, 1325–1379. [Google Scholar] [CrossRef]
- Yakovlev, E.V.; Zaytsev, K.I.; Dolganova, I.N.; Yurchenko, S.O. Non-Destructive Evaluation of Polymer Composite Materials at the Manufacturing Stage Using Terahertz Pulsed Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 810–816. [Google Scholar] [CrossRef]
- Tao, Y.H.; Fitzgerald, A.J.; Wallace, V.P. Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology. Sensors 2020, 20, 712. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, G. High-Power Vacuum Electronic Devices from Microwave to THz Band: Way Forward. Electronics 2021, 10, 2436. [Google Scholar] [CrossRef]
- Amenabar, I.; Lopez, F.; Mendikute, A. In Introductory Review to THz Non-Destructive Testing of Composite Mater. J. Infrared Millim. Terahertz Waves 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Ahi, K.; Anwar, M. Terahertz Techniques: Novel Non-destructive Tests for Detection of Counterfeit Electronic Components. In Proceedings of the Connecticut Symposium on Microelectronics & Optoelectronics (CMOC), Storrs, CT, USA, 9 April 2014. [Google Scholar]
- Banerjee, A.; Vajandar, S.; Basu, T. Chapter 13—Prospects in Medical Applications of Terahertz Waves. In Terahertz Biomedical and Healthcare Technologies; Banerjee, A., Chakraborty, B., Inokawa, H., Nath Roy, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–239. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging [Invited]. Opt. Express 2018, 26, 9417. [Google Scholar] [CrossRef]
- Kiarash, A.; Nathan, J.; Mohammad-Parsa, H.; Navid, A. Survey of terahertz photonics and biophotonics. Opt. Eng. 2020, 59, 1–31. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Xu, D.; Ren, Y.; He, Y.; Li, C.; Zhang, C.; Tang, L.; Yan, C.; Yao, J. Terahertz computed tomography of high-refractive-index objects based on refractive index matching. IEEE Photonics J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Miccinesi, L.; Consumi, T.; Beni, A.; Pieraccini, M. W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics 2021, 10, 2261. [Google Scholar] [CrossRef]
- Toker, O.; Brinkmann, M. A Novel Nonlinearity Correction Algorithm for FMCW Radar Systems for Optimal Range Accuracy and Improved Multitarget Detection Capability. Electronics 2019, 8, 1290. [Google Scholar] [CrossRef] [Green Version]
- Ahi, K.; Shahbazmohamadi, S.; Asadizanjani, N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 2018, 104, 274–284. [Google Scholar] [CrossRef]
- Kiarash, A.; Mehdi, A. Advanced terahertz techniques for quality control and counterfeit detection. In Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense; International Society for Optics and Photonics: Bellingham, DC, USA, 2016. [Google Scholar]
- Yeom, S.; Lee, D.S.; Jang, Y.S.; Lee, M.K.; Jung, S.W. Real-time concealed-object detection and recognition with passive millimeter wave imaging. Opt. Express 2012, 20, 9371. [Google Scholar] [CrossRef] [PubMed]
- Augustin, S.; Hubers, H.W. Phase-Sensitive Passive Terahertz Imaging at 5-m Stand-Off Distance. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 418–424. [Google Scholar] [CrossRef]
- Dolganova, I.N.; Zaytsev, K.I.; Metelkina, A.A.; Yurchenko, S.O. The active-passive continuous-wave terahertz imaging system. J. Phys. Conf. Ser. 2016, 735, 012075. [Google Scholar] [CrossRef] [Green Version]
- Mann, C. Real time passive imaging at 250GHz for security: Technology and phenomenology. In Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 14–18 September 2009; pp. 1013–1015. [Google Scholar]
- Banerjee, A.; Satoh, H.; Elamaran, D.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor. J. Appl. Phys. 2019, 125, 214502. [Google Scholar] [CrossRef]
- Samanta, D.; Karthikeyan, M.; Banerjee, A.; Inokawa, H. Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging. Nanomedicine 2021, 16, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Weg, C.A.; Spiegel, W.V.; Hils, B.; Loffler, T.; Roskos, H.G. Fast active THz camera with range detection by frequency modulation. In Proceedings of the 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008. [Google Scholar]
- Deliang, Z.; Liwei, H.; Yi, Y.; Yuanzhang, Z.; Xuecou, T.; Jian, C.; Peiheng, W. Bifocal dual reflector system for active terahertz imaging. Appl. Opt. 2018, 57, 3224. [Google Scholar]
- Am Weg, C.; von Spiegel, W.; Henneberger, R.; Zimmermann, R.; Loeffler, T.; Roskos, H.G. Fast Active THz Cameras with Ranging Capabilities. J. Infrared Millim. Terahertz Waves 2009, 30, 1281–1296. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Graham, M.S.; Zsoldos, E.; Sotiropoulos, S.N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 2016, 141, 556–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, J.; Huang, S.; Shang, Z.; Ying, X. Radial Lens Distortion Correction Using Convolutional Neural Networks Trained with Synthesized Images. In Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Tang, Z.; Lin, Y.S.; Lee, K.H.; Hwang, J.N.; Chuang, J.H. ESTHER: Joint Camera Self-Calibration and Automatic Radial Distortion Correction from Tracking of Walking Humans. IEEE Access 2019, 7, 10754–10766. [Google Scholar] [CrossRef]
- Mello, A.W.; Book, T.A.; Nicolas, A.; Otto, S.E.; Gilpin, C.J.; Sangid, M.D. Distortion Correction Protocol for Digital Image Correlation after Scanning Electron Microscopy: Emphasis on Long Duration and Ex-Situ Experiments. Exp. Mech. 2017, 57, 1395–1409. [Google Scholar] [CrossRef]
- Tao, X.; Gao, H.; Wang, Y.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent Network for Deep Image Deblurring. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Rivara, M.C.; Rodriguez-Moreno, P.A. Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation. In International Meshing Roundtable; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Lei, Y.; Ying, Y. Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent. Proc. Mach. Learn. Res. 2020, 119, 5809–5819. [Google Scholar]
- Horé, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010. [Google Scholar]
Name | Original Image | Corrected Image |
---|---|---|
SSIM | SSIM | |
Sample 1 | 0.5101 | 0.7368 |
Sample 2 | 0.4637 | 0.6652 |
Sample 3 | 0.4971 | 0.6813 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, C.; Long, Z.; Liu, D.; Liu, W.; Wang, T.; Yang, Z.; Wang, K.; Liu, J. An Imaging Enhancement Method for a Terahertz Rotation Mirror Imaging System Based on a Scale-Recurrent Network. Electronics 2021, 10, 2821. https://doi.org/10.3390/electronics10222821
You C, Long Z, Liu D, Liu W, Wang T, Yang Z, Wang K, Liu J. An Imaging Enhancement Method for a Terahertz Rotation Mirror Imaging System Based on a Scale-Recurrent Network. Electronics. 2021; 10(22):2821. https://doi.org/10.3390/electronics10222821
Chicago/Turabian StyleYou, Chengwu, Zhenyu Long, Defeng Liu, Wei Liu, Tianyi Wang, Zhengang Yang, Kejia Wang, and Jinsong Liu. 2021. "An Imaging Enhancement Method for a Terahertz Rotation Mirror Imaging System Based on a Scale-Recurrent Network" Electronics 10, no. 22: 2821. https://doi.org/10.3390/electronics10222821