Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. PET Detector
2.2. SiPM Multiplexing Circuit
2.3. Experimental Setup
2.4. Data Analysis
3. Results
3.1. Flood Histogram
3.2. Energy Performance
3.3. Timing Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grant, A.M.; Deller, T.W.; Khalighi, M.M.; Maramraju, S.H.; Delso, G.; Levin, C.S. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med. Phys. 2016, 43, 2334–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.J.; Kang, H.G.; Ko, G.B.; Song, I.C.; Rhee, J.-T.; Lee, J.S. SiPM-PET with a short optical fiber bundle for simultaneous PET-MR imaging. Phys. Med. Biol. 2012, 57, 3869. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.B.; Yoon, H.S.; Kim, K.Y.; Lee, M.S.; Yang, B.Y.; Jeong, J.M.; Lee, D.S.; Song, I.C.; Kim, S.-K.; Kim, D.; et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging. J. Nucl. Med. 2016, 57, 1309–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.I.; Lee, J.S.; Yoon, H.S.; Ito, M.; Ko, G.B.; Choi, J.Y.; Lee, S.-H.; Song, I.C.; Jeong, J.M.; Lee, D.S.; et al. Development of small-animal PET prototype using silicon photomultiplier (SiPM): Initial results of phantom and animal imaging studies. J. Nucl. Med. 2011, 52, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Lee, J.S. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier. Phys. Med. Biol. 2015, 60, 6495. [Google Scholar] [CrossRef] [PubMed]
- Rausch, I.; Ruiz, A.; Valverde-Pascual, I.; Cal-González, J.; Beyer, T.; Carrio, I. Performance evaluation of the Vereos PET/CT system according to the NEMA NU2-2012 standard. J. Nucl. Med. 2019, 60, 561–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.-W.; Kim, K.Y.; Park, J.Y.; Kim, K.; Lee, Y.-S.; Ko, G.B.; Lee, J.S. SimPET: A Preclinical PET Insert for Simultaneous PET/MR Imaging. Mol. Imaging Biol. 2020, 22, 1208–1217. [Google Scholar] [CrossRef]
- Van Sluis, J.; De Jong, J.; Schaar, J.; Noordzij, W.; Van Snick, P.; Dierckx, R.; Borra, R.; Willemsen, A.; Boellaard, R. Performance characteristics of the digital Biograph Vision PET/CT system. J. Nucl. Med. 2019, 60, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Ko, G.B.; Kwon, S.I.; Lee, C.M.; Ito, M.; Song, I.C.; Lee, D.S.; Hong, S.J.; Lee, J.S. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J. Nucl. Med. 2012, 53, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goertzen, A.L.; Zhang, X.; McClarty, M.M.; Berg, E.J.; Liu, C.-Y.; Kozlowski, P.; Retière, F.; Ryner, L.; Sossi, V.; Stortz, G.; et al. Design and performance of a resistor multiplexing readout circuit for a SiPM detector. IEEE Trans. Nucl. Sci. 2013, 60, 1541–1549. [Google Scholar] [CrossRef]
- Ko, G.B.; Kim, K.Y.; Yoon, H.S.; Lee, M.S.; Son, J.-W.; Im, H.-J.; Lee, J.S. Evaluation of a silicon photomultiplier PET insert for simultaneous PET and MR imaging. Med. Phys. 2016, 43, 72–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, G.B.; Lee, J.S. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET. Phys. Med. Biol. 2017, 62, 2194. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.I.; Lee, J.S. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array. Nucl. Instrum. Methods A 2014, 761, 39–45. [Google Scholar] [CrossRef]
- Park, H.; Ko, G.B.; Lee, J.S. Hybrid charge division multiplexing method for silicon photomultiplier based PET detectors. Phys. Med. Biol. 2017, 62, 4390. [Google Scholar] [CrossRef]
- Won, J.Y.; Ko, G.B.; Lee, J.S. Delay grid multiplexing: Simple time-based multiplexing and readout method for silicon photomultipliers. Phys. Med. Biol. 2016, 61, 7113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Imaizumi, M.; Watabe, T.; Watabe, H.; Kanai, Y.; Shimosegawa, E.; Hatazawa, J. Development of a Si-PM-based high-resolution PET system for small animals. Phys. Med. Biol. 2010, 55, 5817. [Google Scholar] [CrossRef]
- Du, J.; Yang, Y.; Bai, X.; Judenhofer, M.S.; Berg, E.; Di, K.; Buckley, S.; Jackson, C.; Cherry, S.R. Characterization of large-area SiPM array for PET applications. IEEE Trans. Nucl. Sci. 2016, 63, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, S.; Silverman, R.W.; Shao, Y.; Cherry, S.R. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans. Nucl. Sci. 1996, 43, 1634–1641. [Google Scholar] [CrossRef]
- Bieniosek, M.; Cates, J.; Grant, A.; Levin, C. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs. Phys. Med. Biol. 2016, 61, N427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Lee, J.S. Highly multiplexed SiPM signal readout for brain-dedicated TOF-DOI PET detectors. Phys. Med. 2019, 68, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, S.; Ko, G.B.; Lee, J.S. Achieving reliable coincidence resolving time measurement of PET detectors using multichannel waveform digitizer based on DRS4 chip. Phys. Med. Biol. 2018, 63, 24NT02. [Google Scholar] [CrossRef] [PubMed]
- Cates, J.W.; Levin, C.S. Electronics method to advance the coincidence time resolution with bismuth germanate. Phys. Med. Biol. 2019, 64, 175016. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Lee, J.P.; Lee, J.S. Timing performance study of new fast PMTs with LYSO for time-of-flight PET. IEEE Trans. Nucl. Sci. 2012, 60, 30–37. [Google Scholar] [CrossRef]
- Ko, G.B.; Lee, J.S. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications. Med. Phys. 2015, 42, 510–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.W.; Kim, K.Y.; Yoon, H.S.; Won, J.Y.; Ko, G.B.; Lee, M.S.; Lee, J.S. Proof-of-concept prototype time-of-flight PET system based on high-quantum-efficiency multianode PMTs. Med. Phys. 2017, 44, 5314–5324. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-W.; Ko, G.B.; Won, J.Y.; Yoon, H.S.; Lee, J.S. Development and performance evaluation of a time-of-flight positron emission tomography detector based on a high-quantum-efficiency multi-anode photomultiplier tube. IEEE Trans. Nucl. Sci. 2016, 63, 44–51. [Google Scholar] [CrossRef]
- Won, J.Y.; Kwon, S.I.; Yoon, H.S.; Ko, G.B.; Son, J.-W.; Lee, J.S. Dual-phase tapped-delay-line time-to-digital converter with on-the-fly calibration implemented in 40 nm FPGA. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 231–242. [Google Scholar] [CrossRef]
- Won, J.Y.; Lee, J.S. Time-to-digital converter using a tuned-delay line evaluated in 28-, 40-, and 45-nm FPGAs. IEEE Trans. Instrum. Meas. 2016, 65, 1678–1689. [Google Scholar] [CrossRef]
- Ito, M.; Hong, S.J.; Lee, J.S. Positron emission tomography (PET) detectors with depth-of-interaction (DOI) capability. Biomed. Eng. Lett. 2011, 1, 70. [Google Scholar] [CrossRef]
- Ito, M.; Lee, M.S.; Lee, J.S. Continuous depth-of-interaction measurement in a single-layer pixelated crystal array using a single-ended readout. Phys. Med. Biol. 2013, 58, 1269. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.G.; Ko, G.B.; Rhee, J.T.; Kim, K.M.; Lee, J.S.; Hong, S.J. A dual-ended readout detector using a meantime method for SiPM TOF-DOI PET. IEEE Trans. Nucl. Sci. 2015, 62, 1935–1943. [Google Scholar] [CrossRef]
- Son, J.-W.; Lee, M.S.; Lee, J.S. A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout. Phys. Med. Biol. 2016, 62, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Kang, S.K.; Lee, J.S. Novel inter-crystal scattering event identification method for PET detectors. Phys. Med. Biol. 2018, 63, 115015. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.Y.; Lee, M.S.; Lee, J.S. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG crystals. Phys. Med. Biol. 2020, 65, 195005. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, J.S. SiPM signal readout for inter-crystal scatter event identification in PET detectors. Phys. Med. Biol. 2020, 65, 200510. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, M.S.; Won, J.Y.; Lee, J.S. Performance of a new accelerating-electrode-equipped fast-time-response PMT coupled with fast LGSO. Phys. Med. Biol. 2018, 63, 05NT3. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Song, I.C.; Ito, M.; Kwon, S.I.; Lee, G.S.; Sim, K.-S.; Park, K.S.; Rhee, J.T.; Lee, J.S. An investigation into the use of Geiger-mode solid-state photomultipliers for simultaneous PET and MRI acquisition. IEEE Trans. Nucl. Sci. 2008, 55, 882–888. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, S.J. Geiger-mode avalanche photodiodes for PET/MRI. In Electronics for Radiation Detection; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 179–198. [Google Scholar]
- Roncali, E.; Cherry, S.R. Application of silicon photomultipliers to positron emission tomography. Ann. Biomed. Eng. 2011, 39, 1358–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, I.; Kang, T.; Wells, B.T.; Lawrence, J.; Hammig, M.D. Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect. Nucl. Instrum. Method A 2015, 784, 220–225. [Google Scholar] [CrossRef]
- Zhang, N.; Schmand, M.J. Bootstrapping Readout for Large Terminal Capacitance Analog-SiPM Based Time-of-Flight PET Detector. U.S. Patent No. 10,128,801, 13 November 2018. [Google Scholar]
- Berg, E.; Cherry, S.R. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms. Phys. Med. Biol. 2018, 63, 02lt1. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomed. Eng. Lett. 2019, 9, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kang, S.K.; Kim, K.Y.; Seo, S.; Paeng, J.C.; Lee, D.S.; Lee, J.S. Generation of PET attenuation map for whole-body time-of-flight (18)F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J. Nucl. Med. 2019, 60, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hwang, D.; Kim, K.Y.; Kang, S.K.; Kim, Y.K.; Lee, J.S. Computed tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 2018, 63, 145011. [Google Scholar] [CrossRef] [PubMed]
- Shojaedini, S.V.; Beirami, M.J. Mobile sensor based human activity recognition: Distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept. Biomed. Eng. Lett. 2020, 10, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans. Radiat Plasma Med. Sci. 2021, 5, 160–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, M.; Park, H.; Lee, J.S. Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems. Electronics 2021, 10, 698. https://doi.org/10.3390/electronics10060698
Seo M, Park H, Lee JS. Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems. Electronics. 2021; 10(6):698. https://doi.org/10.3390/electronics10060698
Chicago/Turabian StyleSeo, Minjee, Haewook Park, and Jae Sung Lee. 2021. "Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems" Electronics 10, no. 6: 698. https://doi.org/10.3390/electronics10060698