Objective Assessment of Walking Impairments in Myotonic Dystrophy by Means of a Wearable Technology and a Novel Severity Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Wearable Sensors
2.3. Motor Tasks
2.4. Data Analysis
2.4.1. Area Ratio (AR)
2.4.2. Power Ratio (PR)
2.4.3. Severity Index (SI) and Si-Norm2
3. Results
3.1. Area Ratio (AR)
3.2. Power Spectral Density and PR (Power Ratio)
3.3. Severity Index (SI-Norm2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanacore, N.; Rastelli, E.; Antonini, G.; Bianchi, M.L.E.; Botta, A.; Bucci, E.; Casali, C.; Costanzi-Porrini, S.; Giacanelli, M.; Gibellini, M.; et al. An Age-Standardized Prevalence Estimate and a Sex and Age Distribution of Myotonic Dystrophy Types 1 and 2 in the Rome Province, Italy. Neuroepidemiology 2016, 46, 191–197. [Google Scholar] [CrossRef]
- Tomé, S.; Gourdon, G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New Therapies. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- De Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G. Unravelling the Myotonic Dystrophy Type 1 Clinical Spectrum: A Systematic Registry-Based Study with Implications for Disease Classification. Rev. Neurol. 2016, 172, 572–580. [Google Scholar] [CrossRef]
- Okkersen, K.; Jimenez-Moreno, C.; Wenninger, S.; Daidj, F.; Glennon, J.; Cumming, S.; Littleford, R.; Monckton, D.G.; Lochmüller, H.; Catt, M.; et al. Cognitive Behavioural Therapy with Optional Graded Exercise Therapy in Patients with Severe Fatigue with Myotonic Dystrophy Type 1: A Multicentre, Single-Blind, Randomised Trial. Lancet Neurol. 2018, 17, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, J.; Boivin, H.; Meunier, D.; Gaudreault, M.; Bégin, P. Assessment of a Disease-Specific Muscular Impairment Rating Scale in Myotonic Dystrophy. Neurology 2001, 56, 336–340. [Google Scholar] [CrossRef]
- Gagnon, C.; Heatwole, C.; Hébert, L.J.; Hogrel, J.-Y.; Laberge, L.; Leone, M.; Meola, G.; Richer, L.; Sansone, V.; Kierkegaard, M. Report of the Third Outcome Measures in Myotonic Dystrophy Type 1 (OMMYD-3) International Workshop Paris, France, June 8, 2015. J. Neuromuscul. Dis. 2018, 5, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Cutellè, C.; Rastelli, E.; Gibellini, M.; Greco, G.; Frezza, E.; Botta, A.; Terracciano, C.; Massa, R. Validation of the Nine Hole Peg Test as a Measure of Dexterity in Myotonic Dystrophy Type 1. Neuromuscul. Disord. 2018, 28, 947–951. [Google Scholar] [CrossRef]
- Jimenez-Moreno, A.C.; Nikolenko, N.; Kierkegaard, M.; Blain, A.P.; Newman, J.; Massey, C.; Moat, D.; Sodhi, J.; Atalaia, A.; Gorman, G.S.; et al. Analysis of the Functional Capacity Outcome Measures for Myotonic Dystrophy. Ann. Clin. Transl. Neurol. 2019, 6, 1487–1497. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Cimolin, V.; Crugnola, V.; Priano, L.; Menegoni, F.; Trotti, C.; Milano, E.; Mauro, A. Gait Pattern in Myotonic Dystrophy (Steinert Disease): A Kinematic, Kinetic and EMG Evaluation Using 3D Gait Analysis. J. Neurol. Sci. 2011, 314, 83–87. [Google Scholar] [CrossRef]
- Ricci, M.; Di Lazzaro, G.; Pisani, A.; Mercuri, N.B.; Giannini, F.; Saggio, G. Assessment of Motor Impairments in Early Untreated Parkinson’s Disease Patients: The Wearable Electronics Impact. IEEE J. Biomed Health Inform. 2020, 24, 120–130. [Google Scholar] [CrossRef]
- Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampogna, A.; Manoni, A.; Asci, F.; Liguori, C.; Irrera, F.; Suppa, A. Shedding Light on Nocturnal Movements in Parkinson’s Disease: Evidence from Wearable Technologies. Sensors 2020, 20, 5171. [Google Scholar] [CrossRef]
- Ricci, M.; Terribili, M.; Giannini, F.; Errico, V.; Pallotti, A.; Galasso, C.; Tomasello, L.; Sias, S.; Saggio, G. Wearable-Based Electronics to Objectively Support Diagnosis of Motor Impairments in School-Aged Children. J. Biomech. 2019, 83, 243–252. [Google Scholar] [CrossRef]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Costa, G.D.; Pérez-López, C.; Camerota, F.; et al. Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Popp, W.L.; Schneider, S.; Bär, J.; Bösch, P.; Spengler, C.M.; Gassert, R.; Curt, A. Wearable Sensors in Ambulatory Individuals With a Spinal Cord Injury: From Energy Expenditure Estimation to Activity Recommendations. Front. Neurol. 2019, 10, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Errico, V.; Ricci, M.; Pallotti, A.; Giannini, F.; Saggio, G. Ambient assisted living for tetraplegic people by means of an electronic system based on a novel sensory headwear: Increased possibilities for reduced abilities. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Reeder, B.; Chung, J.; Stevens-Lapsley, J. Current Telerehabilitation Research with Older Adults at Home: An Integrative Review. J. Gerontol. Nurs. 2016, 42, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Leoni, A.; Ulisse, I.; Pantoli, L.; Errico, V.; Ricci, M.; Orengo, G.; Giannini, F.; Saggio, G. Energy Harvesting Optimization for Built-in Power Replacement of Electronic Multisensory Architecture. AEU Int. J. Electron. Commun. 2019, 107, 170–176. [Google Scholar] [CrossRef]
- Saggio, G.; Cavallo, P.; Ricci, M.; Errico, V.; Zea, J.; Benalcázar, M.E. Sign Language Recognition Using Wearable Electronics: Implementing k-Nearest Neighbors with Dynamic Time Warping and Convolutional Neural Network Algorithms. Sensors 2020, 20, 3879. [Google Scholar] [CrossRef]
- Miozzi, C.; Errico, V.; Saggio, G.; Gruppioni, E.; Marrocco, G. UHF RFID-Based EMG for Prosthetic Control: Preliminary Results. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 310–313. [Google Scholar]
- Muñoz, B.; Valderrama, J.; Orozco, J.; Castaño, Y.; Montilla, L.; Rincon, D.; Navarro, A. Smart Tracking and Wearables: Techniques in Gait Analysis and Movement in Pathological Aging. Smart Healthc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chapron, K.; Plantevin, V.; Thullier, F.; Bouchard, K.; Duchesne, E.; Gaboury, S. A More Efficient Transportable and Scalable System for Real-Time Activities and Exercises Recognition. Sensors 2018, 18, 268. [Google Scholar] [CrossRef] [Green Version]
- Storm, F.A.; Cesareo, A.; Reni, G.; Biffi, E. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. Sensors 2020, 20, 2660. [Google Scholar] [CrossRef]
- Naro, A.; Portaro, S.; Milardi, D.; Billeri, L.; Leo, A.; Militi, D.; Bramanti, P.; Calabrò, R.S. Paving the Way for a Better Understanding of the Pathophysiology of Gait Impairment in Myotonic Dystrophy: A Pilot Study Focusing on Muscle Networks. J. Neuroeng. Rehabil. 2019, 16, 116. [Google Scholar] [CrossRef]
- Jimenez-Moreno, A.C.; Charman, S.J.; Nikolenko, N.; Larweh, M.; Turner, C.; Gorman, G.; Lochmüller, H.; Catt, M. Analyzing Walking Speeds with Ankle and Wrist Worn Accelerometers in a Cohort with Myotonic Dystrophy. Disabil. Rehabil. 2019, 41, 2972–2978. [Google Scholar] [CrossRef] [Green Version]
- Saggio, G.; Tombolini, F.; Ruggiero, A. Technology-Based Complex Motor Tasks Assessment: A 6-DOF Inertial-Based System Versus a Gold-Standard Optoelectronic-Based One. IEEE Sens. J. 2021, 21, 1616–1624. [Google Scholar] [CrossRef]
- Das, K.D.; Saji, A.J.; Kumar, C.S. Frequency Analysis of Gait Signals for Detection of Neurodegenerative Diseases. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
SI-1 | SI-2 | SI | Severity Grade |
---|---|---|---|
0 | 0 | 0 | Regular |
1 | 0 | 1 | Mild |
1 | 1 | 2 | Severe |
0 | 1 | X | Impossible |
# | CS_1L | CS_1R | FP_2L | FP_2R | CS_3L | CS_3R | FP_4L | FP_4R | |
---|---|---|---|---|---|---|---|---|---|
CONTROLS | 1 | 0.673 | 0.777 | 0.594 | 0.672 | 0.375 | 0.749 | 0.957 | 0.715 |
2 | 0.582 | 0.771 | 0.251 | 0.268 | 0.720 | 0.578 | 0.506 | 0.420 | |
3 | 0.867 | 0.820 | 0.866 | 0.873 | 0.761 | 0.797 | 0.760 | 0.750 | |
4 | 0.880 | 0.838 | 0.859 | 0.492 | 0.506 | 0.650 | 0.976 | 0.632 | |
5 | 0.832 | 1.021 | 0.689 | 0.627 | 0.558 | 0.568 | 0.863 | 0.408 | |
6 | 0.998 | 0.911 | 0.648 | 0.599 | 0.881 | 0.673 | 0.564 | 0.515 | |
7 | 1.542 | 0.240 | 1.486 | 0.734 | 0.596 | 1.182 | 0.471 | 1.055 | |
8 | 1.415 | 1.781 | 0.727 | 0.887 | 0.764 | 1.683 | 1.162 | 0.791 | |
9 | 1.189 | 1.174 | 1.015 | 1.385 | 1.086 | 0.732 | 0.774 | 0.946 | |
10 | 1.495 | 0.908 | 1.366 | 0.683 | 1.226 | 1.090 | 1.712 | 1.076 | |
11 | 1.335 | 1.549 | 1.181 | 1.986 | 1.570 | 0.688 | 1.092 | 2.118 | |
PATIENTS | 12 | 0.468 | 0.860 | 0.634 | 0.504 | 0.430 | 1.739 | 0.616 | 0.794 |
13 | 0.419 | 0.392 | 9.681 | 0.771 | 0.961 | 0.680 | 0.802 | 0.570 | |
14 | 1.423 | 1.941 | 12.028 | 1.919 | 1.358 | 2.025 | 1.698 | 2.105 | |
15 | 1.048 | 1.905 | 0.220 | 1.511 | 1.886 | 0.591 | 1.487 | 0.473 | |
16 | 0.456 | 1.834 | 0.698 | 1.374 | 0.465 | 0.605 | 0.404 | 1.911 | |
17 | 2.246 | 4.154 | 0.915 | 1.333 | 2.432 | 0.526 | 0.231 | 1.189 | |
18 | 1.488 | 0.948 | 1.690 | 1.523 | 1.970 | 1.173 | 1.631 | 1.843 | |
19 | 1.887 | 4.532 | 0.813 | 0.821 | 0.589 | 0.713 | 0.673 | 0.660 | |
20 | 1.736 | 2.138 | 2.100 | 2.864 | 2.752 | 1.986 | 2.141 | 2.459 | |
21 | 1.144 | 1.621 | 0.636 | 1.555 | 0.804 | 1.900 | 0.636 | 1.545 | |
22 | 1.992 | 2.170 | 1.538 | 1.924 | 1.738 | 2.188 | 1.071 | 1.697 | |
23 | 1.025 | 1.000 | 0.906 | 0.855 | 3.117 | 3.192 | 1.461 | 0.796 | |
24 | 0.939 | 0.837 | 0.617 | 0.620 | 0.458 | 2.261 | 0.464 | 0.494 |
# | CS_1L | CS_1R | FP_2L | FP_2R | CS_3L | CS_3R | FP_4L | FP_4R | |
---|---|---|---|---|---|---|---|---|---|
CONTROLS | 1 | 0.381 | 0.500 | 0.902 | 1.242 | 0.188 | 0.449 | 0.140 | 0.818 |
2 | 0.203 | 0.239 | 0.207 | 0.416 | 0.348 | 0.357 | 0.407 | 0.345 | |
3 | 0.521 | 0.433 | 0.586 | 0.615 | 0.559 | 0.462 | 0.761 | 0.572 | |
4 | 0.775 | 0.640 | 0.899 | 0.688 | 0.813 | 0.658 | 0.883 | 0.596 | |
5 | 0.812 | 0.871 | 0.682 | 0.741 | 0.605 | 0.412 | 0.540 | 0.447 | |
6 | 0.921 | 0.860 | 0.764 | 0.817 | 0.741 | 1.089 | 0.672 | 1.090 | |
7 | 0.622 | 0.788 | 0.864 | 0.887 | 0.908 | 0.962 | 0.837 | 1.063 | |
8 | 0.478 | 0.613 | 0.603 | 0.560 | 0.490 | 0.589 | 0.836 | 0.940 | |
9 | 0.472 | 0.642 | 0.679 | 0.731 | 0.664 | 0.547 | 0.315 | 0.192 | |
10 | 0.343 | 0.171 | 0.365 | 0.165 | 0.310 | 0.388 | 0.373 | 0.423 | |
11 | 0.602 | 0.825 | 2.071 | 0.558 | 0.685 | 0.691 | 0.847 | 0.638 | |
PATIENTS | 12 | 1.022 | 1.388 | 1.180 | 1.077 | 1.051 | 1.322 | 1.216 | 1.149 |
13 | 1.971 | 1.446 | 1.928 | 1.249 | 1.827 | 1.471 | 2.512 | 1.476 | |
14 | 1.227 | 2.945 | 0.976 | 1.874 | 1.379 | 2.695 | 0.917 | 1.637 | |
15 | 1.880 | 1.097 | 1.449 | 1.059 | 1.906 | 0.683 | 1.764 | 0.673 | |
16 | 1.115 | 1.971 | 1.145 | 1.679 | 0.984 | 2.017 | 1.030 | 1.772 | |
17 | 1.987 | 1.612 | 0.635 | 1.291 | 2.008 | 2.339 | 2.132 | 2.079 | |
18 | 1.853 | 1.240 | 1.536 | 1.296 | 1.461 | 2.641 | 1.397 | 2.706 | |
19 | 0.775 | 0.261 | 0.365 | 0.154 | 0.667 | 0.474 | 0.602 | 0.318 | |
20 | 3.142 | 2.506 | 3.191 | 2.550 | 2.535 | 1.945 | 2.959 | 1.882 | |
21 | 1.624 | 1.738 | 1.886 | 1.904 | 1.582 | 1.719 | 1.887 | 1.905 | |
22 | 1.851 | 2.071 | 1.342 | 2.223 | 2.864 | 4.560 | 1.288 | 1.757 | |
23 | 7.622 | 8.977 | 6.692 | 9.246 | 2.907 | 2.640 | 2.648 | 2.939 | |
24 | 2.111 | 1.167 | 1.828 | 1.125 | 1.584 | 1.220 | 1.457 | 1.288 |
SUBJECT # | AGE | GENDER | MIRS | SI-Norm2 | |
---|---|---|---|---|---|
Controls | 1 | 62 | M | - | 1 |
2 | 59 | F | - | 0 | |
3 | 48 | F | - | 0 | |
4 | 41 | M | - | 0 | |
5 | 28 | M | - | 1 | |
6 | 30 | M | - | 0 | |
7 | 46 | F | - | 4 | |
8 | 46 | F | - | 3 | |
9 | 29 | F | - | 4 | |
10 | 46 | F | - | 4 | |
11 | 28 | F | - | 4 | |
Patients | 12 | 48 | M | 3 | 7 |
13 | 47 | F | 3 | 7 | |
14 | 53 | F | 3 | 10 | |
15 | 55 | M | 3 | 10 | |
16 | 38 | F | 3 | 12 | |
17 | 38 | F | 3 | 16 | |
18 | 55 | M | 3 | 16 | |
19 | 52 | F | 3 | 2 | |
20 | 52 | M | 4 | 16 | |
21 | 57 | M | 4 | 16 | |
22 | 33 | M | 4 | 16 | |
23 | 53 | M | 4 | 13 | |
24 | 22 | F | 4 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saggio, G.; Manoni, A.; Errico, V.; Frezza, E.; Mazzetta, I.; Rota, R.; Massa, R.; Irrera, F. Objective Assessment of Walking Impairments in Myotonic Dystrophy by Means of a Wearable Technology and a Novel Severity Index. Electronics 2021, 10, 708. https://doi.org/10.3390/electronics10060708
Saggio G, Manoni A, Errico V, Frezza E, Mazzetta I, Rota R, Massa R, Irrera F. Objective Assessment of Walking Impairments in Myotonic Dystrophy by Means of a Wearable Technology and a Novel Severity Index. Electronics. 2021; 10(6):708. https://doi.org/10.3390/electronics10060708
Chicago/Turabian StyleSaggio, Giovanni, Alessandro Manoni, Vito Errico, Erica Frezza, Ivan Mazzetta, Rosario Rota, Roberto Massa, and Fernanda Irrera. 2021. "Objective Assessment of Walking Impairments in Myotonic Dystrophy by Means of a Wearable Technology and a Novel Severity Index" Electronics 10, no. 6: 708. https://doi.org/10.3390/electronics10060708
APA StyleSaggio, G., Manoni, A., Errico, V., Frezza, E., Mazzetta, I., Rota, R., Massa, R., & Irrera, F. (2021). Objective Assessment of Walking Impairments in Myotonic Dystrophy by Means of a Wearable Technology and a Novel Severity Index. Electronics, 10(6), 708. https://doi.org/10.3390/electronics10060708