Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costica, N.; Gabriel, C.; Cuciureanu, D.; Guoqiang, Z.; Dong, H.T. Numerical Analysis of a Real Photovoltaic Module with Various Parameters. Model. Simul. Eng. 2018, 2018, 1–12. [Google Scholar]
- Parida, B.; Iniyan, S. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Gonçalves, P.; Sampaioa, V.; Orestes, M.; Gonzáleza, A.; Monteirode, R.; Marllen, V.; Teixeirados, A.; José, S.; Toledob, C.; Paulo, J.; et al. Photovoltaic technologies: Mapping from patent analysis. Renew. Sustain. Energy Rev. 2018, 93, 215–224. [Google Scholar]
- Ram, J.P.; Manghani, H.; Pillai, D.S.; Babu, T.S.; Miyatake, M.; Rajasekar, N. Analysis on solar PV emulators: A review. Renew. Sustain. Energy Rev. 2018, 81, 149–160. [Google Scholar] [CrossRef]
- Chou, K.Y.; Yang, S.; Chen, Y. Maximum Power Point Tracking of Photovoltaic System Based on Reinforcement Learning. Sensors 2019, 19, 5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozo, B.; Garate, J.; Araujo, J.; Ferreiro, S. Photovoltaic Energy Harvesting System Adapted for Different Environmental Operation Conditions: Analysis, Modeling, Simulation and Selection of Device. Sensors 2019, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antolín, D.; Medrano, N.; Calvo, B.; Martínez, P.A. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit. Sensors 2017, 17, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.; Mather, P. Photovoltaic fault detection algorithm based on theoretical curves modeling and fuzzy classification system. Energy 2017, 140, 279–290. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Cheng, S.; Lin, P.; Wu, Y.; Lin, W. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy 2017, 204, 912–931. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Wu, L.; Yu, J.; Cheng, S.; Lin, P.; Chen, H. Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents. Energy Convers. Manag. 2018, 178, 250–264. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Long, C.; Cheng, S.; Lin, P.; Chen, Y.; Chen, H. Parameter extraction of photovoltaic models from measured I–V characteristics curves using a hybrid trust-region reflective algorithms. Appl. Energy 2018, 232, 36–53. [Google Scholar] [CrossRef]
- Dolara, A.; Lazaroiu, G.C.; Leva, S.; Manzolini, G. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 2013, 55, 466–475. [Google Scholar] [CrossRef]
- Dolara, A.; Lazaroiu, G.C.; Ogliari, E. Efficiency analysis of PV power plants shaded by MV overhead lines. Int. J. Energy Environ. Eng. 2016, 7, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Eke, R.; Betts, T.R.; Gottschalg, R. Spectral irradiance effects on the outdoor performance of photovoltaic modules. Renew. Sustain. Energy Rev. 2017, 69, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.P.N.; Nashih, S.K.; Fernandes, C.A.F.; Leite, J.C. The effect of shading on photovoltaic solar panels. Energy Syst. 2018, 9, 195–208. [Google Scholar] [CrossRef]
- Jie, L.; Runran, L.; Yuanjie, J.; Zhixin, Z. Prediction of I–V Characteristic Curve for Photovoltaic Modules Based on Convolutional Neural Network. Sensors 2020, 20, 2119. [Google Scholar]
- Ma, J.; Pan, X.; Man, K.L.; Li, X.; Wen, H.; Ting, T.O. Detection and assessment of partial shading scenarios on photovoltaic strings. IEEE Trans. Ind. Appl. 2018, 54, 6279–6289. [Google Scholar] [CrossRef]
- Xenophontos, A.; Bazzi, A.M. Model-based maximum power curves of solar photovoltaic panels under partial shading conditions. IEEE J. Photovoltaics 2018, 8, 233–238. [Google Scholar] [CrossRef]
- Bharadwaj, P.; John, V. Subcell modelling of partially shaded solar photovoltaic panels. IEEE Trans. Ind. Appl. 2019, 1, 3046–3054. [Google Scholar] [CrossRef]
- Lin, G.; Bimenyimana, S.; Tseng, M.L.; Wang, C.H.; Liu, Y.; Li, L. Photovoltaic Modules Selection from Shading Effects on Different Materials. Symmetry 2020, 12, 2082. [Google Scholar] [CrossRef]
- Galeano, A.; Michael, B.; Vargas, F.; Corinne, A. Shading Ratio Impact on Photovoltaic Modules and Correlation with Shading Patterns. Energies 2018, 11, 852. [Google Scholar] [CrossRef] [Green Version]
- Jeisson, V.; David, B.; Ramos-Paja, C.; Montoya, D.; Adriana, T. A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules. Energies 2019, 12, 303. [Google Scholar]
- Dhimish, M.; Mather, P.; Holmes, V. Evaluating Power Loss and Performance Ratio of Hot-Spotted Photovoltaic Modules. IEEE Trans. Electron Devices 2018, 65, 5419–5427. [Google Scholar] [CrossRef] [Green Version]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.; Mather, P. PV output power enhancement using two mitigation techniques for hot spots and partially shaded solar cells. Electr. Power Syst. Res. 2018, 158, 15–25. [Google Scholar] [CrossRef]
- Corte, F.G.D.; De Martino, G.; Pezzimenti, F.; Adinolfi, G.; Graditi, G. Numerical simulation study of a low breakdown voltage 4H-SiC MOSFET for photovoltaic module-level applications. IEEE Trans. Electron Devices 2018, 56, 3352–3360. [Google Scholar] [CrossRef]
- Gyun, S.; Whan, S.; Jun, H.; Ju, Y.C.; Mi, H. Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature. Energies 2018, 11, 2416. [Google Scholar]
- Ko, S.W.; Ju, Y.C.; Hwang, H.M.; So, J.H.; Jung, Y.S.; Song, H.J.; Song, H.E. Electrical and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode. Energies 2017, 128, 232–243. [Google Scholar] [CrossRef]
- Hassabou, A.; Abotaleb, A.; Abdallah, A. Passive Thermal Management of Photovoltaic Modules—Mathematical Modeling and Simulation of Photovoltaic Modules. J. Sol. Energy Eng. 2017, 139, 1–31. [Google Scholar] [CrossRef]
- Tan, Y.; Kirschen, D.; Jenkins, N. A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 2004, 19, 748–755. [Google Scholar] [CrossRef]
- Villalva, M.; Gazoli, J.; Filho, E. Modeling and circuit-based simulation of photovoltaic arrays. Braz. J. Power Electron. 2009, 14, 35–45. [Google Scholar]
- Haque, A.M.; Sharma, S.; Nagal, D. Simulation of photovoltaic array using MATLAB/Simulink: Analysis, comparison and results. Int. J. Adv. Comput. Technol. 2016, 13, 12–21. [Google Scholar]
- Hieslmair, H. Dynamic Design of Solar Cell Structures, Photovoltaic Modules and Corresponding Processes. U.S. Patent Application 12/070,381, 28 August 2008. [Google Scholar]
- Al Tarabsheh, A.; MHareb, M.; Kahla, M. Photovoltaic-Wind Hybrid Turbine System. U.S. Patent 10,612,522, 7 April 2020. [Google Scholar]
- Reverter, F.; Gasulla, M. Optimal Inductor Current in Boost DC/DC Converters Regulating the Input Voltage Applied to Low-Power Photovoltaic Modules. IEEE Trans. Power Electron. 2017, 32, 36188–36196. [Google Scholar] [CrossRef] [Green Version]
Mode | States of Switches | Module Voltage | Module Current | ||
---|---|---|---|---|---|
Mode 1 | 36 | 1 | and are closed | Highest | Lowest |
Mode 2 | 18 | 2 | and are closed | Moderate | Moderate |
Mode 3 | 9 | 4 | and are closed | Lowest | Highest |
Mode | ||||
---|---|---|---|---|
(%) | ||||
36/60/72 Cells | 36/60/72 Cells | 36/60/72 Cells | 36/60/72 Cells | |
Conventional, | 21.6/36/43.2 | 7.34/7.34/7.34 | 120.6/200.98/241.19 | - |
without shading | ||||
Conventional, | 21.54/35.94/43.14 | 1.47/1.47/1.47 | 30.69/51.44/61.82 | 74.55/74.41/74.37 |
with shading | ||||
Mode 1 | 21.54/35.94/43.14 | 7.34/7.34/7.34 | 45.96/119.27/145.99 | 61.89/40.66/39.47 |
Mode 2 | 10.77/11.98/14.38 | 8.81/14.68/14.68 | 73.41/139.21/167.03 | 39.13/30.73/30.75 |
Mode 3 | 5.39/6/7.2 | 23.49/22.02/22.02 | 96.96/100.49/120.57 | 19.59/50/50.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarabsheh, A.A.; Akmal, M.; Ghazal, M. Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes. Electronics 2021, 10, 1046. https://doi.org/10.3390/electronics10091046
Tarabsheh AA, Akmal M, Ghazal M. Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes. Electronics. 2021; 10(9):1046. https://doi.org/10.3390/electronics10091046
Chicago/Turabian StyleTarabsheh, Anas Al, Muhammad Akmal, and Mohammed Ghazal. 2021. "Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes" Electronics 10, no. 9: 1046. https://doi.org/10.3390/electronics10091046
APA StyleTarabsheh, A. A., Akmal, M., & Ghazal, M. (2021). Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes. Electronics, 10(9), 1046. https://doi.org/10.3390/electronics10091046