EnGe-CSNet: A Trainable Image Compressed Sensing Model Based on Variational Encoder and Generative Networks
Abstract
:1. Introduction
- The present study builds novel convolutional generative networks termed as EnGe-CSNet that applies more to compressed sensing applications. EnGe-CSNet more effectively extracts the general features of target images in specific applications by integrating the advantages exhibited by VAE and DCGAN.
- The present study designs a novel deep CS framework to up-regulate the compression rate and improve the reconstruction quality in CS applications (e.g., crop monitoring and face detection). The model proposed employs pre-trained generative networks as prior information to overall exploit the structural similarity of images collected by sensors.
- The study verifies that the image reconstructed algorithms based on generative networks exhibit a strong anti-noise ability.
2. Related Work
2.1. Compressed Sensing
2.2. Image Reconstruction Based on Neural Networks
3. Proposed Method
3.1. Image Reconstruction Using Generative Networks
Algorithm 1 Proposed Approach |
Input:, , , t, learning rate , maximum restart steps , Iterations |
for to do |
Randomly initialize |
for to do |
Optimize |
end for |
if then |
Break |
end if |
end for |
Output:. |
3.2. Generative Adversarial Networks with Variational Encoder
4. Experiments and Discussion
4.1. Dataset and Training Details
4.2. Comparisons with State-of-the-Art Approaches
4.2.1. Experimental Setup
4.2.2. Results and Discussion
4.3. The Influence of Hyper-Parameters
4.4. Anti-Noise Performance
- The scene is insufficiently bright, or the brightness is non-uniform when the image sensor is operating.
- The temperature of image sensors is excessively high due to their long working time.
- Noise affecting the sensor’s circuit components may have an impact on the output image captured.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Fracastoro, G.; Fosson, S.M.; Magli, E. Steerable discrete cosine transform. IEEE Trans. Image Process. 2016, 26, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Rein, S.; Reisslein, M. Scalable line-based wavelet image coding in wireless sensor networks. J. Vis. Commun. Image Represent. 2016, 40, 418–431. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J. The restricted isometry property and its implications for compressed sensing. C. R. Math. 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Raskutti, G.; Wainwright, M.J.; Yu, B. Restricted eigenvalue properties for correlated Gaussian designs. J. Mach. Learn. Res. 2010, 11, 2241–2259. [Google Scholar]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.J.; Ritov, Y.; Tsybakov, A.B. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 2009, 37, 1705–1732. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Bora, A.; Jalal, A.; Price, E.; Dimakis, A.G. Compressed sensing using generative models. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 537–546. [Google Scholar]
- Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1558–1566. [Google Scholar]
- Bell, J.; Dee, H. Aberystwyth leaf evaluation dataset. 2016, 168158, 2. Available online: https://doi.org/10.5281/zenodo (accessed on 18 January 2021).
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- Chartrand, R.; Yin, W. Iteratively reweighted algorithms for compressive sensing. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3869–3872. [Google Scholar]
- Zhang, J.; Xiong, T.; Tran, T.; Chin, S.; Etienne-Cummings, R. Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure. Opt. Express 2016, 24, 9013–9024. [Google Scholar] [CrossRef] [PubMed]
- Kwan, C.; Gribben, D.; Chou, B.; Budavari, B.; Larkin, J.; Rangamani, A.; Tran, T.; Zhang, J.; Etienne-Cummings, R. Real-Time and Deep Learning Based Vehicle Detection and Classification Using Pixel-Wise Code Exposure Measurements. Electronics 2020, 9, 1014. [Google Scholar] [CrossRef]
- Wu, Y.; Rosca, M.; Lillicrap, T. Deep compressed sensing. arXiv 2019, arXiv:1905.06723. [Google Scholar]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Image Compressed Sensing Using Convolutional Neural Network. IEEE Trans. Image Process. 2019, 29, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 521–538. [Google Scholar] [CrossRef]
- Seitzer, M.; Yang, G.; Schlemper, J.; Oktay, O.; Würfl, T.; Christlein, V.; Wong, T.; Mohiaddin, R.; Firmin, D.; Keegan, J.; et al. Adversarial and perceptual refinement for compressed sensing MRI reconstruction. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 232–240. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Odaibo, S. Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function. arXiv 2019, arXiv:1907.08956. [Google Scholar]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 2014, 23, 3618–3632. [Google Scholar] [CrossRef]
- Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From denoising to compressed sensing. IEEE Trans. Inf. Theory 2016, 62, 5117–5144. [Google Scholar] [CrossRef]
- Yuan, X. Generalized alternating projection based total variation minimization for compressive sensing. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2539–2543. [Google Scholar]
Images | Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
Plants | Lasso | 22.91 | 0.4851 | 20.97 | 0.3573 | 18.88 | 0.2431 | 17.93 | 0.2087 | 17.67 | 0.2049 |
TVAL3 | 18.61 | 0.5670 | 17.58 | 0.4620 | 15.59 | 0.3491 | 14.80 | 0.3072 | 14.41 | 0.2904 | |
NLRCS | 30.19 | 0.8044 | 27.32 | 0.7014 | 23.33 | 0.5162 | 21.48 | 0.4355 | 21.02 | 0.4156 | |
GAPTV | 28.41 | 0.7911 | 26.32 | 0.6737 | 24.32 | 0.5379 | 23.29 | 0.4773 | 22.75 | 0.4554 | |
DAMP | 30.22 | 0.8098 | 26.68 | 0.6780 | 10.28 | 0.1108 | 10.18 | 0.1528 | 10.34 | 0.1561 | |
CSGM | 25.25 | 0.5724 | 24.89 | 0.5543 | 23.93 | 0.5120 | 23.17 | 0.4760 | 22.92 | 0.4669 | |
Ours | 30.31 | 0.8110 | 30.01 | 0.8020 | 28.86 | 0.7618 | 26.66 | 0.6582 | 25.06 | 0.5798 | |
Faces | Lasso | 17.20 | 0.3802 | 15.69 | 0.2764 | 14.08 | 0.1765 | 13.28 | 0.1436 | 13.06 | 0.1328 |
TVAL3 | 17.79 | 0.6410 | 14.87 | 0.4768 | 12.02 | 0.3218 | 10.27 | 0.2548 | 9.72 | 0.2269 | |
NLRCS | 28.85 | 0.8458 | 24.06 | 0.7307 | 19.04 | 0.4705 | 17.53 | 0.3751 | 17.02 | 0.3458 | |
GAPTV | 25.44 | 0.8208 | 23.01 | 0.7179 | 20.37 | 0.5355 | 19.26 | 0.4504 | 18.55 | 0.4077 | |
DAMP | 29.05 | 0.8506 | 24.32 | 0.7519 | 6.55 | 0.0825 | 6.60 | 0.0967 | 6.57 | 0.0890 | |
CSGM | 24.63 | 0.7315 | 24.34 | 0.7194 | 23.33 | 0.6796 | 22.38 | 0.6377 | 21.86 | 0.6055 | |
Ours | 28.16 | 0.8324 | 26.67 | 0.8070 | 25.01 | 0.7492 | 23.05 | 0.6605 | 21.94 | 0.6008 |
Methods | Devices | |||
---|---|---|---|---|
Lasso | CPU | 5.0481 | 0.2887 | 0.0443 |
TVAL3 | CPU | 0.9515 | 1.0463 | 1.0862 |
NLRCS | CPU | 98.1406 | 97.9562 | 97.6856 |
GAPTV | CPU | 2.5941 | 2.5623 | 2.5415 |
DAMP | CPU | 5.8094 | 3.6383 | 3.4367 |
CSGM | GPU | 0.2541 | 0.2486 | 0.2417 |
Ours | GPU | 0.1564 | 0.2355 | 0.4935 |
Images | TVAL3 | NLRCS | GAPTV | DAMP | CSGM | Ours | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Plants | 12.01 | 0.3028 | 20.52 | 0.4090 | 25.67 | 0.6235 | 23.96 | 0.5552 | 24.25 | 0.5318 | 27.47 | 0.7092 |
Faces | 14.16 | 0.4536 | 20.15 | 0.5247 | 23.70 | 0.7176 | 23.08 | 0.6851 | 21.89 | 0.6636 | 24.03 | 0.7392 |
Images | TVAL3 | NLRCS | GAPTV | DAMP | CSGM | Ours | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Plants | 12.66 | 0.3015 | 20.19 | 0.3914 | 25.25 | 0.6110 | 23.72 | 0.5472 | 24.08 | 0.5225 | 26.79 | 0.6780 |
Faces | 14.27 | 0.4465 | 19.90 | 0.5176 | 23.61 | 0.7125 | 22.88 | 0.6771 | 21.86 | 0.6642 | 23.91 | 0.7342 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Zhang, J.; Sun, G.; Ren, X. EnGe-CSNet: A Trainable Image Compressed Sensing Model Based on Variational Encoder and Generative Networks. Electronics 2021, 10, 1089. https://doi.org/10.3390/electronics10091089
Zheng B, Zhang J, Sun G, Ren X. EnGe-CSNet: A Trainable Image Compressed Sensing Model Based on Variational Encoder and Generative Networks. Electronics. 2021; 10(9):1089. https://doi.org/10.3390/electronics10091089
Chicago/Turabian StyleZheng, Bowen, Jianping Zhang, Guiling Sun, and Xiangnan Ren. 2021. "EnGe-CSNet: A Trainable Image Compressed Sensing Model Based on Variational Encoder and Generative Networks" Electronics 10, no. 9: 1089. https://doi.org/10.3390/electronics10091089
APA StyleZheng, B., Zhang, J., Sun, G., & Ren, X. (2021). EnGe-CSNet: A Trainable Image Compressed Sensing Model Based on Variational Encoder and Generative Networks. Electronics, 10(9), 1089. https://doi.org/10.3390/electronics10091089