The Pilot Study of the Hazard Perception Test for Evaluation of the Driver’s Skill Using Virtual Reality
Abstract
:1. Introduction
2. Problem Statement and Objectives
- (1)
- To verify the difference in hazard perception between novice and experienced drivers in the VR hazard perception test;
- (2)
- To investigate the effect of cybersickness in the VR hazard perception test.
3. Materials and Methods
3.1. Subject
3.2. Hazard Perception Scenario
3.3. Hazard Types
3.4. Procedure
3.5. Data Analysis
4. Results
4.1. Participants
4.2. Comparing the Hazardous Events and Type between Novice and Experienced Groups
4.3. Statistical Analysis between Two Groups
4.4. Comparing the Hazard Type in Each Group
4.5. Comparing SSQ between Young and Middle Groups
5. Discussion
6. Limitation
7. Conclusions and Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, S.C.; Molnar, F.; Man-Son-Hing, M.; Blair, R.; Brosseau, L.; Finestone, H.M.; Lamothe, C.; Korner-Bitensky, N.; Wilson, K.G. Predictors of driving ability following stroke: A systematic review. Top. Stroke Rehabil. 2007, 14, 98–114. [Google Scholar] [CrossRef]
- Reger, M.A.; Welsh, R.K.; Watson, G.S.; Cholerton, B.; Baker, L.D.; Craft, S. The Relationship Between Neuropsychological Functioning and Driving Ability in Dementia: A Meta-Analysis. Neuropsychology 2004, 18, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Hird, M.A.; Egeto, P.; Fischer, C.E.; Naglie, G.; Schweizer, T.A. A Systematic Review and Meta-Analysis of On-Road Simulator and Cognitive Driving Assessment in Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2016, 53, 713–729. [Google Scholar] [CrossRef]
- Horswill, M.S.; McKenna, F.P. Drivers’ Hazard Perception Ability: Situation Awareness on the Road. A Cognitive Approach to Situation Awareness: Theory and Application; Banbury, S., Tremblay, S., Eds.; Ashgate Publishing: New York, NY, USA, 2004; pp. 155–175. [Google Scholar]
- Peltz, D.C.; Krupat, E. Caution profile and driving record of undergraduate males. Accid. Anal. Prev. 1974, 6, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Borowsky, A.; Shinar, D.; Oron-Gilad, T. Age, skill, and hazard perception in driving. Accid. Anal. Prev. 2010, 42, 1240–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, P.; Bragg, B.W. Perception of the risk of an accident by young and older drivers. Accid. Anal. Prev. 1986, 18, 289–298. [Google Scholar] [CrossRef]
- Underwood, G.; Phelps, N.; Wright, C.; Van Loon, E.; Galpin, A. Eye fixation scanpaths of younger and older drivers in a hazard perception task. Ophthalmic Physiol. Opt. 2005, 25, 346–356. [Google Scholar] [CrossRef]
- Wetton, M.A.; Hill, A.; Horswill, M.S. The development and validation of a hazard perception test for use in driver licensing. Accid. Anal. Prev. 2011, 43, 1759–1770. [Google Scholar] [CrossRef]
- Moran, C.; Bennett, J.M.; Prabhakharan, P. Road user hazard perception tests: A systematic review of current methodologies. Accid. Anal. Prev. 2019, 129, 309–333. [Google Scholar] [CrossRef]
- Anstey, K.J.; Eramudugolla, R.; Huque, H.; Horswill, M.; Kiely, K.; Black, A.; Wood, J. Validation of Brief Screening Tools to Identify Impaired Driving Among Older Adults in Australia. JAMA Netw. Open 2020, 3, e208263. [Google Scholar] [CrossRef]
- Bowers, A.R.; Mandel, A.J.; Goldstein, R.B.; Peli, E. Driving with Hemianopia, I: Detection Performance in a Driving Simulator. Investig. Opthalmol. Vis. Sci. 2009, 50, 5137–5147. [Google Scholar] [CrossRef]
- Sasaki, T.; Nogawa, T.; Yamada, K.; Kojima, T.; Kanaya, K. Hazard perception of stroke drivers in a video-based Japanese hazard perception task. Traffic Inj. Prev. 2019, 20, 264–269. [Google Scholar] [CrossRef]
- Endsley, M. Situation awareness global assessment technique (SAGAT). In Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, Dayton, OH, USA, 23–27 May 1988; Volume 3, pp. 789–795. [Google Scholar]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors J. Hum. Factors Ergon. Soc. 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997, 6, 603. [Google Scholar] [CrossRef]
- Agrawal, R.; Knödler, M.; Fisher, D.L.; Samuel, S. Virtual Reality Headset Training: Can It Be Used to Improve Young Drivers’ Latent Hazard Anticipation and Mitigation Skills. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 20–30. [Google Scholar] [CrossRef]
- Madigan, R.; Romano, R. Does the use of a head mounted display increase the success of risk awareness and perception training (RAPT) for drivers? Appl. Ergon. 2020, 85, 103076. [Google Scholar] [CrossRef] [PubMed]
- Psotka, J. Immersive training systems: Virtual reality and education and training. Instr. Sci. 1995, 23, 405–431. [Google Scholar] [CrossRef]
- Schultheis, M.T.; Mourant, R.R. Virtual Reality and Driving: The Road to Better Assessment for Cognitively Impaired Populations. Presence Teleoperators Virtual Environ. 2001, 10, 431–439. [Google Scholar] [CrossRef]
- Yamani, Y.; Biçaksiz, P.; Palmer, D.B.; Cronauer, J.M.; Samuel, S. Following expert’s eyes: Evaluation of the effectiveness of a gaze-based training intervention on young drivers’ latent hazard anticipation skills. In Proceedings of the Ninth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design 2017, Manchester Village, VT, USA, 26–29 June 2017. [Google Scholar]
- Blane, A.; Lee, H.C.; Falkmer, T.; Willstrand, T.D. Assessing Cognitive Ability and Simulator-Based Driving Performance in Poststroke Adults. Behav. Neurol. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Classen, S.; Bewernitz, M.; Shechtman, O. Driving Simulator Sickness: An Evidence-Based Review of the Literature. Am. J. Occup. Ther. 2011, 65, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Weidner, F.; Hoesch, A.; Poeschl, S.; Broll, W. Comparing VR and non-VR driving simulations: An experimental user study. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 281–282. [Google Scholar]
- Aykent, B.; Yang, Z.; Merienne, F.; Kemeny, A. Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and medium range field of view static ecological driving simulator (eco2). Proc. Driv. Simul. Conf. 2016, 31, 31. [Google Scholar]
- Dużmańska, N.; Strojny, P.; Strojny, A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Front. Psychol. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Reason, J.T. Motion sickness adaptation: A neural mismatch model. J. R. Soc. Med. 1978, 71, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laviola, J.J. A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 2000, 32, 47–56. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Hettinger, L.J.; Lilienthal, M.G. Simulator Sickness. Motion and Space Sickness; Crampton, G.H., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 317–341. [Google Scholar]
- McCauley, M.E.; Sharkey, T.J. Cybersickness: Perception of Self-Motion in Virtual Environments. Presence Teleoperators Virtual Environ. 1992, 1, 311–318. [Google Scholar] [CrossRef]
- Moss, J.D.; Muth, E.R. Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Hum. Factors J. Hum. Factors Ergon. Soc. 2011, 53, 308–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crundall, D. Hazard prediction discriminates between novice and experienced drivers. Accid. Anal. Prev. 2016, 86, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Renge, K. Drivers’ hazard and risk perception, confidence in safe driving, and choice of speed. IATSS Res. 1998, 22, 103–110. [Google Scholar]
- Crundall, D.; Chapman, P.; Trawley, S.; Collins, L.; Van Loon, E.; Andrews, B.; Underwood, G. Some hazards are more attractive than others: Drivers of varying experience respond differently to different types of hazard. Accid. Anal. Prev. 2012, 45, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Borowsky, A.; Oron-Gilad, T. Exploring the effects of driving experience on hazard awareness and risk perception via real-time hazard identification, hazard classification, and rating tasks. Accid. Anal. Prev. 2013, 59, 548–565. [Google Scholar] [CrossRef]
- Grayson, G.B.; Sexton, B.F. The Development of Hazard Perception Testing. TRL Report 2002, 558. Available online: https://trid.trb.org/view/731829 (accessed on 7 May 2021).
- Ventsislavova, P.; Crundall, D. The hazard prediction test: A comparison of free-response and multiple-choice formats. Saf. Sci. 2018, 109, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Benda, H.V.; Hoyos, C.G. Estimating hazards in traffic situations. Accid. Anal. Prev. 1983, 15, 1–9. [Google Scholar] [CrossRef]
- Carlozzi, N.E.; Gade, V.; Rizzo, A. “Skip”; Tulsky, D.S. Using virtual reality driving simulators in persons with spinal cord injury: Three screen display versus head mounted display. Disabil. Rehabil. Assist. Technol. 2012, 8, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Aldaba, C.N.; White, P.J.; Byagowi, A.; Moussavi, Z. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; Volume 2017, pp. 4175–4178. [Google Scholar]
- Stoffregen, T.A.; Chang, C.-H.; Chen, F.-C.; Zeng, W.-J. Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLoS ONE 2017, 12, e0187120. [Google Scholar] [CrossRef]
- Sinitski, E.; Thompson, A.; Godsell, P.; Honey, J.; Besemann, M. Postural stability and simulator sickness after walking on a treadmill in a virtual environment with a curved display. Displays 2018, 52, 1–7. [Google Scholar] [CrossRef]
- Feenstra, P.; Bos, J.; Van Gent, R. A visual display enhancing comfort by counteracting airsickness. Displays 2011, 32, 194–200. [Google Scholar] [CrossRef]
- Sportillo, D.; Paljic, A.; Ojeda, L. Get ready for automated driving using Virtual Reality. Accid. Anal. Prev. 2018, 118, 102–113. [Google Scholar] [CrossRef] [PubMed]
Obvious hazard (OH) | Visible hazard |
Potential hazard (PH) | Invisible hidden hazard |
Hazard prediction (HP) | Hazard prediction of current behavior of other road users |
0 | 1 | 2 | 3 | ||
---|---|---|---|---|---|
1 | General discomfort | None | Slight | Moderate | Severe |
2 | Fatigue | None | Slight | Moderate | Severe |
3 | Headache | None | Slight | Moderate | Severe |
4 | Eye strain | None | Slight | Moderate | Severe |
5 | Difficulty focusing | None | Slight | Moderate | Severe |
6 | Increased salivation | None | Slight | Moderate | Severe |
7 | Sweating | None | Slight | Moderate | Severe |
8 | Nausea | None | Slight | Moderate | Severe |
9 | Difficulty concentrating | None | Slight | Moderate | Severe |
10 | Fullness of the head | None | Slight | Moderate | Severe |
11 | Blurred vision | None | Slight | Moderate | Severe |
12 | Dizzy (eyes open) | None | Slight | Moderate | Severe |
13 | Dizzy (eyes closed) | None | Slight | Moderate | Severe |
14 | Vertigo | None | Slight | Moderate | Severe |
15 | Stomach awareness | None | Slight | Moderate | Severe |
16 | Burping | None | Slight | Moderate | Severe |
Novice Group | Experienced Group | |||
---|---|---|---|---|
Participants | ||||
Male | 13 | 24 | ||
Female | 19 | 12 | ||
Total | 32 | 36 | ||
Age | ||||
Average | 21.5 | 36.9 | ||
SD | 0.5 | 7.3 | ||
Driving Experience | ||||
Average | 2.3 | 17.2 | ||
SD | 0.8 | 7.9 | ||
Hazard Identification | ||||
Hazard type | ||||
Total | 79 | 82 | ||
OH | 38 | 39 | ||
PH | 17 | 19 | ||
HP | 24 | 24 | ||
Indication number | ||||
Total | 1071 | 1376 | ||
OH | 547 | 690 | ||
PH | 329 | 353 | ||
HP | 195 | 333 |
HE | Hazard Context | HT | Identification Number | The Ratio of Identification | χ2 | p-Value | φ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NV | EX | Total | NV | EX | total | |||||||
Q2 | h2-2 | A motor vehicle running in the right side lane may dart out in the same lane. | HP | 18 | 29 | 47 | 56.3 | 80.6 | 69.1 | 4.689 | 0.030 | 0.263 |
h2-3 | There may be a pedestrian on the left between the bus and the sidewalk. | PH | 6 | 22 | 28 | 18.8 | 61.1 | 41.2 | 12.551 | 0.000 | 0.430 | |
h2-4 | Pedestrian is standing the sidewalk. | OH | 10 | 1 | 11 | 31.3 | 2.8 | 16.2 | 10.128 | 0.001 | 0.386 | |
Q3 | h3-3 | Bicycle in the opposite lane may dart out. | HP | 15 | 27 | 42 | 46.9 | 75.0 | 61.8 | 5.674 | 0.017 | 0.289 |
Q4 | h4-1 | Pedestrian may hide behind the vehicle of opposite lane. | PH | 18 | 30 | 48 | 56.3 | 83.3 | 70.6 | 5.985 | 0.014 | 0.297 |
h4-4 | Poor visibility because of rain. | OH | 11 | 5 | 16 | 34.4 | 13.9 | 23.5 | 3.951 | 0.047 | 0.241 | |
Q5 | h5-3 | Bicycle in the left side may dart out. | HP | 9 | 21 | 30 | 28.1 | 58.3 | 44.1 | 6.271 | 0.012 | 0.304 |
Q7 | h7-5 | Fallen objects may come from a construction site. | PH | 2 | 10 | 12 | 6.3 | 27.8 | 17.6 | 5.402 | 0.020 | 0.282 |
Q8 | h8-5 | The opposite vehicle is likely to overtake the stopping taxi at the opposite traffic lane. | HP | 3 | 13 | 16 | 9.4 | 36.1 | 23.5 | 6.730 | 0.009 | 0.315 |
Q10 | h10-9 | The vehicle of right side at the intersection are waiting to turn left. | OH | 0 | 6 | 6 | 0.0 | 16.7 | 8.8 | 3.961 a | 0.047 | 0.241 |
Q11 | h11-3 | There is a motor vehicle at the opposite traffic lane. | OH | 16 | 28 | 44 | 50.0 | 77.8 | 64.7 | 5.724 | 0.017 | 0.290 |
h11-5 | Pedestrian may run out into the street from the park | PH | 0 | 6 | 6 | 0.0 | 16.7 | 8.8 | 3.961 a | 0.047 | 0.241 | |
Q12 | h12-2 | Motorcycles is approaching near the vehicle from the rear on the right side | HP | 19 | 33 | 52 | 59.4 | 91.7 | 76.5 | 9.818 | 0.002 | 0.380 |
h12-4 | Pedestrian may dart out from left side. | PH | 7 | 18 | 25 | 21.9 | 50.0 | 36.8 | 5.764 | 0.016 | 0.291 | |
Q13 | h13-4 | Pedestrian may dart out from behind the truck. | PH | 5 | 16 | 21 | 15.6 | 44.4 | 30.9 | 6.592 | 0.010 | 0.311 |
h13-5 | Bus is stopping in the side. | OH | 11 | 5 | 16 | 34.4 | 13.9 | 23.5 | 3.951 | 0.047 | 0.241 | |
Q15 | h15-1 | There is a motor vehicle running ahead. | OH | 26 | 36 | 62 | 81.3 | 100.0 | 91.2 | 5.256 a | 0.022 | 0.278 |
h15-3 | Pedestrian may dart out in the right/left side. | PH | 6 | 17 | 23 | 18.8 | 47.2 | 33.8 | 6.136 | 0.013 | 0.300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, T.; Uda, H.; Suzuki, A.; Tomori, K.; Ohno, K.; Iga, H.; Okita, Y.; Fujita, Y. The Pilot Study of the Hazard Perception Test for Evaluation of the Driver’s Skill Using Virtual Reality. Electronics 2021, 10, 1114. https://doi.org/10.3390/electronics10091114
Sawada T, Uda H, Suzuki A, Tomori K, Ohno K, Iga H, Okita Y, Fujita Y. The Pilot Study of the Hazard Perception Test for Evaluation of the Driver’s Skill Using Virtual Reality. Electronics. 2021; 10(9):1114. https://doi.org/10.3390/electronics10091114
Chicago/Turabian StyleSawada, Tatsunori, Hiroki Uda, Akira Suzuki, Kounosuke Tomori, Kanta Ohno, Hiroki Iga, Yuho Okita, and Yoshio Fujita. 2021. "The Pilot Study of the Hazard Perception Test for Evaluation of the Driver’s Skill Using Virtual Reality" Electronics 10, no. 9: 1114. https://doi.org/10.3390/electronics10091114
APA StyleSawada, T., Uda, H., Suzuki, A., Tomori, K., Ohno, K., Iga, H., Okita, Y., & Fujita, Y. (2021). The Pilot Study of the Hazard Perception Test for Evaluation of the Driver’s Skill Using Virtual Reality. Electronics, 10(9), 1114. https://doi.org/10.3390/electronics10091114