Underwater Image Enhancement Using Improved CNN Based Defogging
Abstract
:1. Introduction
2. Models in Underwater Imaging Process
2.1. Underwater Optical Imaging Model
2.2. CIE Lab Color Model
3. Underwater Image Enhancement Methods
3.1. Color Balance Algorithm
3.2. CNN based Defogging Algorithm
3.2.1. Network Architecture
3.2.2. Implementation Details
3.3. Contrast Limited Adaptive Histogram Equalization (CLAHE)
4. Validation
4.1. Subjective Visual Evaluation
4.1.1. Comparison with Other Algorithms
4.1.2. Ablation Experiment
4.1.3. Edge Information Detection
4.2. Objective Quality Evaluation
4.3. Complexity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bindhu, A.; Uma, M.O. Color corrected single scale Retinex based haze removal and color correction for underwater images. Color Res. Appl. 2020, 45, 1084–1903. [Google Scholar]
- Henke, B.; Vahl, M.; Zhou, Z. Removing color cast of underwater images through non-constant color constancy hypothesis. In Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 4–6 September 2013; pp. 20–24. [Google Scholar]
- Hegde, D.; Desai, C.; Tabib, R.; Patil, U.B.; Mudenagudi, U.; Bora, P.K. Adaptive Cubic Spline Interpolation in CIELAB Color Space for Underwater Image Enhancement. Procedia Comput. Sci. 2020, 171, 52–61. [Google Scholar] [CrossRef]
- Nidhyanandhan, S.S.; Sindhuja, R.; Kumari, R. Double Stage Gaussian Filter for Better Underwater Image Enhancement. Wirel. Pers. Commun. 2020, 114, 2909–2921. [Google Scholar] [CrossRef]
- Ghani, A.S.A. Image contrast enhancement using an integration of recursive-overlapped contrast limited adaptive histogram specification and dual-image wavelet fusion for the high visibility of deep underwater image. Ocean Eng. 2018, 162, 224–238. [Google Scholar] [CrossRef]
- Qiao, X.; Bao, J.; Zhang, H.; Zeng, L.; Li, D. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform. Inf. Process. Agric. 2017, 4, 206–213. [Google Scholar] [CrossRef]
- Lin, S.; Chi, K.-C.; Li, W.-T.; Tang, Y.-D. Underwater Optical Image Enhancement Based on Dominant Feature Image Fusion. Acta Photonica Sin. 2020, 49, 209–221. [Google Scholar]
- Chiang, J.-Y.; Chen, Y.-C. Underwater Image Enhancement by Wavelength Compensation and Dehazing. IEEE Trans. Image Process. 2012, 21, 1756–1769. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [PubMed]
- Drews, P., Jr.; Nascimento, E.R.; Botelho, S.S.C.; Campos, M.F.M. Underwater Depth Estimation and Image Restoration Based on Single Images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef]
- Galdran, A.; Pardo, D.; Picón, A.; Gila, A. Automatic Red-Channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Carlevaris-Bianco, N.; Mohan, A.; Eustice, R.M. Initial results in underwater single image dehazing. In Proceedings of the IEEE Conference on OCEANS, Seattle, WA, USA, 20–23 September 2010; Volume 27, pp. 1–8. [Google Scholar]
- Wang, N.; Zheng, H.; Zheng, B. Underwater Image Restoration via Maximum Attenuation Identification. IEEE Access 2017, 5, 18941–18952. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Cong, R.; Pang, Y.; Wang, B. Underwater Image Enhancement by Dehazing with Minimum Information Loss and Histogram Distribution Prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2822–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, B.-L.; Xu, X.-M.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.-Q.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.-H. Single Image Dehazing via Multiscale Convolutional Neural Networks. In Computer Vision—ECCV 2016, Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 154–169. [Google Scholar]
- Zhao, X.; Wang, K.-Y.; Li, Y.-S.; Li, J.-J. Deep Fully Convolutional Regression Networks for Single Image Haze Removal. In Proceedings of the 2017 IEEE International Conference on Visual Communications and Image Processing, Saint Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Hou, M.; Liu, R.; Fan, X.; Luo, Z. Joint Residual Learning for Underwater Image Enhancement. In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4043–4047. [Google Scholar] [CrossRef]
- Shin, Y.-S.; Cho, Y.-G.; Pandey, G.; Kim, A. Estimation of ambient light and transmission map with common convolutional architecture. In Proceedings of the 2016 IEEE Conference on OCEANS, Monterey, CA, USA, 19–23 September 2016; pp. 1–7. [Google Scholar]
- Hu, Y.; Wang, K.-Y.; Zhao, X.; Wang, H.; Li, Y.-S. Underwater Image Restoration Based on Convolutional Neural Network. In Proceedings of the 10th Asian Conference on Machine Learning, PMLR 95, Beijing, China, 14–16 November 2018; pp. 296–311. [Google Scholar]
- Cao, K.; Peng, Y.; Cosman, P.C. Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth. In Proceedings of the 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Las Vegas, NV, USA, 8–10 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Y.; Chen, J.; Wu, X.; Zhao, X.; Li, Y. Underwater Image Restoration Based on a Parallel Convolutional Neural Network. Remote. Sens. 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-Y.; Li, J.-J.; Wang, W. A Fusion Adversarial Underwater Image Enhancement Network with a Public Test Dataset. Electr. Eng. Syst. Sci. 2019, 1–8. Available online: https://arxiv.org/pdf/1906.06819.pdf (accessed on 30 October 2021).
- Sun, X.; Liu, L.; Li, Q.; Dong, J.; Lima, E.; Yin, R. Deep pixel-to-pixel network for underwater image enhancement and restoration. IET Image Process. 2019, 13, 469–474. [Google Scholar] [CrossRef]
- Uplavikar, P.M.; Wu, Z.; Wang, Z. All-in-One Underwater Image Enhancement Using Domain-Adversarial Learning. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 1–8. [Google Scholar]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised Generative Network to Enable Real-Time Color Correction of Monocular Underwater Images. IEEE Robot. Autom. Lett. 2018, 3, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Tran. Image Process. 2020, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-net: All-in-one dehazing network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Foster, D.H. Color constancy. Vis. Res. 2011, 51, 674–700. [Google Scholar] [CrossRef]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Xu, X.Z.; Cai, Y.; Liu, C.; Jia, K.; Shen, L. Color Cast Detection and Color Correction Methods Based on Image Analysis. Meas. Control. Technol. 2008, 5, 10–12. [Google Scholar]
- Weng, C.-C.; Chen, H.; Fuh, C.-S. A novel automatic white balance method for digital still cameras. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 23–26 May 2005; pp. 3801–3804. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks formobile vision applications. arXiv 2017, arXiv:1704.04861. Available online: https://arxiv.org/abs/1704.04861 (accessed on 15 August 2021).
- Qin, X.; Wang, Z.-L.; Bai, Y.-C.; Xie, X.-D.; Jia, H.-Z. FFA-Net: Feature Fusion Attention Network for Single Image Dehazing. Assoc. Adv. Artif. Intell. 2020, 34, 11908–11915. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. Available online: https://arxiv.org/abs/1807.06521 (accessed on 15 August 2021).
- Zhao, H.-S.; Shi, J.-P.; Qi, X.-J.; Wang, X.-G.; Jia, J.-Y. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Li, B.-Y.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashif, I.; Salam, R.A.; Azam, O.; Talib, A.Z. Underwater Image Enhancement Using an Integrated Colour Model. IAENG Int. J. Comput. Sci. 2007, 34, 239–244. [Google Scholar]
- Huang, D.; Yan, W.; Wei, S.; Sequeira, J.; Mavromatis, S. Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In Proceedings of the International Conference on Multimedia Modeling, Bangkok, Thailand, 5–7 February 2018; pp. 453–465. [Google Scholar]
- Rahman, Z.U.; Jobson, D.J.; Woodell, G.A. Retinex Processing for Automatic Image Enhancement. J. Electron. Imaging 2004, 13, 100–110. [Google Scholar]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-L.; Zhang, P.; Quan, L.-W.; Yi, C.; Lu, C.-Y. Underwater Image Enhancement based on Deep Learning and Image Formation Model. Electr. Eng. Syst. Sci. 2021, 1–7. Available online: https://arxiv.org/abs/2101.00991 (accessed on 30 October 2021).
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8160–8168. [Google Scholar]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. A 1990, 7, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, W.F. Fundamentals of Electronic Imaging Systems: Some Aspects of Image Processing; Springer: New York, NY, USA, 1993; pp. 60–70. [Google Scholar]
- Michelson, A.A. Studies in Optics. Dover: New York, NY, USA, 1995. [Google Scholar]
- Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.-Y.; Lee, Y.; Matsuyama, E. Information Entropy Measure for Evaluation of Image Quality. J. Digit. Imaging 2008, 21, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Input Size (C*H*W) | Kernel Size | Activation Function |
---|---|---|---|
DS-Conv1 | 3*320*320 | 11*11(Depthwise Conv) 1∗1(Pointwise Conv) | ReLu |
BMU | 6*320*320 | - | - |
DS-Conv2 | 6*320*320 | 9*9(Depthwise Conv) 1*1(Pointwise Conv) | ReLu |
BMU | 6*320*320 | - | - |
DS-Conv3 | 6*320*320 | 7*7(Depthwise Conv) 1*1(Pointwise Conv) | ReLu |
BMU | 6*320*320 | - | - |
DS-Conv4 | 6*320*320 | 3*3 (Depthwise Conv) 1*1 (Pointwise Conv) | Sigmoid |
DS-Conv5 | 3*320*320 | 7*7 (Depthwise Conv) 1*1 (Pointwise Conv) | ReLu |
BAB | 3*320*320 | - | - |
Concat1 | 3*320*320 3*320*320 | - | - |
DS-Conv6 | 6*320*320 | 5*5 (Depthwise Conv) 1*1 (Pointwise Conv) | ReLu |
BAB | 6*320*320 | - | - |
Concat2 | 3*320*320 6*320*320 | - | - |
DS-Conv7 | 6*320*320 | 5*5 (Depthwise Conv) 1*1 (Pointwise Conv) | ReLu |
BAB | 9*320*320 | - | - |
Concat3 | 9*320*320 9*320*320 | - | - |
CA | 18*320*320 | - | - |
PA | 18*320*320 | - | - |
DS-Conv8 | 18*320*320 | 3*3 (Depthwise Conv) 1*1 (Pointwise Conv) | Sigmoid |
Concat4 | 3*320*320 13*320*320 | - | - |
Pyramid Pooling | 16*320*320 | - | - |
Equation3 | 3*320*320 | - | - |
Image | Original | DCP | AOD | DehazeNet | MSCNN | Proposed |
---|---|---|---|---|---|---|
No.1 | 12.638 | 18.654 | 22.217 | 27.049 | 18.990 | 29.611 |
No.2 | 12.997 | 15.875 | 19.347 | 20.950 | 19.085 | 21.273 |
No.3 | 13.459 | 18.352 | 20.307 | 24.699 | 16.823 | 25.507 |
No.4 | 16.682 | 20.165 | 20.163 | 19.749 | 20.419 | 22.580 |
No.5 | 19.280 | 22.441 | 18.615 | 19.265 | 20.105 | 29.165 |
No.6 | 14.409 | 8.884 | 21.446 | 23.034 | 18.961 | 26.693 |
No.7 | 16.278 | 18.663 | 17.311 | 20.327 | 18.079 | 19.585 |
No.8 | 12.989 | 23.429 | 21.984 | 19.421 | 19.005 | 26.688 |
No.9 | 11.933 | 16.027 | 20.168 | 24.3000 | 18.059 | 24.872 |
No.10 | 18.369 | 14.753 | 20.134 | 18.185 | 18.647 | 26.373 |
Image | Original | DCP | AOD | DehazeNet | MSCNN | Proposed |
---|---|---|---|---|---|---|
No.1 | 0.8172 | 0.8791 | 0.9177 | 0.9358 | 0.8848 | 0.9376 |
No.2 | 0.7794 | 0.8284 | 0.8511 | 0.8615 | 0.8272 | 0.8792 |
No.3 | 0.7085 | 0.8629 | 0.8371 | 0.8763 | 0.7199 | 0.8811 |
No.4 | 0.8627 | 0.8690 | 0.9065 | 0.8256 | 0.8878 | 0.8921 |
No.5 | 0.8947 | 0.8922 | 0.8588 | 0.7070 | 0.8715 | 0.9255 |
No.6 | 0.7714 | 0.5671 | 0.8775 | 0.8415 | 0.7918 | 0.9096 |
No.7 | 0.8661 | 0.9115 | 0.9218 | 0.9275 | 0.8952 | 0.9312 |
No.8 | 0.7430 | 0.8546 | 0.8612 | 0.8546 | 0.8027 | 0.8999 |
No.9 | 0.7024 | 0.8403 | 0.8340 | 0.8805 | 0.8024 | 0.8918 |
No.10 | 0.8669 | 0.8191 | 0.9112 | 0.7406 | 0.8686 | 0.9218 |
Image | Original | ICM | RCP | RGHS | MSRCR | Funie-Gan | UIE-CNN | Proposed |
---|---|---|---|---|---|---|---|---|
No.1 | 24.331 | 24.364 | 20.656 | 27.648 | 10.137 | 26.819 | 25.403 | 31.201 |
No.3 | 6.275 | 8.182 | 7.966 | 10.830 | 9.420 | 9.989 | 12.546 | 12.793 |
No.2 | 18.656 | 21.751 | 22.939 | 20.698 | 18.730 | 25.734 | 28.551 | 34.538 |
No.4 | 9.529 | 10.874 | 9.784 | 13.082 | 8.074 | 13.524 | 13.975 | 17.885 |
No.5 | 21.251 | 23.584 | 24.144 | 21.861 | 18.109 | 24.615 | 27.504 | 33.193 |
No.6 | 11.282 | 16.151 | 14.872 | 22.276 | 16.546 | 16.093 | 22.616 | 23.838 |
No.7 | 5.816 | 9.545 | 11.132 | 12.674 | 11.001 | 11.156 | 13.169 | 13.545 |
No.8 | 12.310 | 16.316 | 15.453 | 19.139 | 16.041 | 18.450 | 22.144 | 24.061 |
No.9 | 8.056 | 10.491 | 9.459 | 8.902 | 7.799 | 14.788 | 11.588 | 18.859 |
No.10 | 14.023 | 15.418 | 15.224 | 16.292 | 14.701 | 17.182 | 18.910 | 23.877 |
No.11 | 4.346 | 4.448 | 5.988 | 4.670 | 2.260 | 4.955 | 6.234 | 8.356 |
No.12 | 6.568 | 9.536 | 7.189 | 12.708 | 7.547 | 7.525 | 9.786 | 14.672 |
Image | Original | ICM | RCP | RGHS | MSRCR | Funie-Gan | UIE-CNN | Proposed |
---|---|---|---|---|---|---|---|---|
No.1 | 27.902 | 27.763 | 22.399 | 31.601 | 12.282 | 29.589 | 28.991 | 35.248 |
No.3 | 6.849 | 8.569 | 8.105 | 11.174 | 9.347 | 9.722 | 12.438 | 12.933 |
No.2 | 17.271 | 20.068 | 19.187 | 23.768 | 17.298 | 20.239 | 26.006 | 32.057 |
No.4 | 10.772 | 11.990 | 10.946 | 14.624 | 9.931 | 14.278 | 15.480 | 19.069 |
No.5 | 20.476 | 22.605 | 20.969 | 24.332 | 17.122 | 22.348 | 26.325 | 31.810 |
No.6 | 10.864 | 15.153 | 13.481 | 21.010 | 15.203 | 14.858 | 21.018 | 22.291 |
No.7 | 6.500 | 10.401 | 11.489 | 13.783 | 11.593 | 11.163 | 13.935 | 14.232 |
No.8 | 6.771 | 8.207 | 8.622 | 12.665 | 7.527 | 9.760 | 14.758 | 15.863 |
No.9 | 7.870 | 10.135 | 8.666 | 14.299 | 8.002 | 9.133 | 11.477 | 17.819 |
No.10 | 13.028 | 14.243 | 14.117 | 15.126 | 14.128 | 16.270 | 17.572 | 21.821 |
No.11 | 4.823 | 4.843 | 5.026 | 5.928 | 2.472 | 6.407 | 6.448 | 8.217 |
No.12 | 7.609 | 10.620 | 8.090 | 14.104 | 8.413 | 7.492 | 10.755 | 16.526 |
Image | Original | ICM | RCP | RGHS | MSRCR | Funie-Gan | UIE-CNN | Proposed |
---|---|---|---|---|---|---|---|---|
No.1 | 0.4788 | 0.4811 | 0.4042 | 0.4948 | 0.2205 | 0.4905 | 0.5121 | 0.5101 |
No.3 | 0.3162 | 0.4216 | 0.3746 | 0.4661 | 0.3296 | 0.3980 | 0.4591 | 0.4801 |
No.2 | 0.3646 | 0.4316 | 0.4307 | 0.4571 | 0.3198 | 0.4143 | 0.4277 | 0.4803 |
No.4 | 0.4022 | 0.4084 | 0.3825 | 0.4408 | 0.2441 | 0.3086 | 0.3701 | 0.4130 |
No.5 | 0.4070 | 0.4391 | 0.4230 | 0.4831 | 0.2687 | 0.4202 | 0.4469 | 0.4971 |
No.6 | 0.3552 | 0.3650 | 0.3451 | 0.4421 | 0.2534 | 0.3285 | 0.3636 | 0.4504 |
No.7 | 0.2589 | 0.3868 | 0.3867 | 0.4453 | 0.3042 | 0.3762 | 0.4045 | 0.4558 |
No.8 | 0.2781 | 0.3375 | 0.3324 | 0.3820 | 0.2475 | 0.4148 | 0.3780 | 0.4351 |
No.9 | 0.2645 | 0.3127 | 0.2715 | 0.4002 | 0.1964 | 0.2948 | 0.3550 | 0.4306 |
No.10 | 0.3641 | 0.4055 | 0.3833 | 0.4346 | 0.2895 | 0.4295 | 0.3930 | 0.4457 |
No.11 | 0.3843 | 0.3867 | 0.3362 | 0.5021 | 0.1061 | 0.3986 | 0.4090 | 0.4910 |
No.12 | 0.3407 | 0.3880 | 0.2637 | 0.4398 | 0.3040 | 0.3536 | 0.3820 | 0.4742 |
Image | Original | ICM | RCP | RGHS | MSRCR | Funie-Gan | UIE-CNN | Proposed |
---|---|---|---|---|---|---|---|---|
No.1 | 7.1083 | 7.1127 | 7.0121 | 7.2949 | 5.6834 | 7.0808 | 7.1897 | 7.5803 |
No.3 | 6.6447 | 7.0609 | 7.1197 | 7.4704 | 6.9240 | 7.0686 | 7.4953 | 7.5347 |
No.2 | 7.1348 | 7.3507 | 7.3037 | 7.5808 | 6.9350 | 7.2779 | 7.6315 | 7.7812 |
No.4 | 7.0564 | 7.2178 | 7.1287 | 7.4650 | 6.2549 | 7.3907 | 7.5082 | 7.5268 |
No.5 | 7.4798 | 7.6411 | 7.5685 | 7.7038 | 7.0556 | 7.6303 | 7.6892 | 7.9086 |
No.6 | 6.8364 | 7.3210 | 7.4770 | 7.7686 | 6.9720 | 7.2046 | 7.7281 | 7.6687 |
No.7 | 6.4284 | 7.1044 | 7.3634 | 7.2833 | 7.0669 | 6.9440 | 7.3246 | 7.4753 |
No.8 | 6.3631 | 6.6527 | 6.8150 | 7.3212 | 6.2720 | 6.8051 | 7.3697 | 7.4480 |
No.9 | 6.6158 | 6.9918 | 6.7102 | 7.4969 | 6.0511 | 6.8190 | 7.1184 | 7.5610 |
No.10 | 7.5602 | 7.6870 | 7.7123 | 7.7445 | 6.9438 | 7.6212 | 7.6772 | 7.8194 |
No.11 | 7.3333 | 7.3553 | 7.4231 | 7.6748 | 7.3566 | 7.3653 | 7.3805 | 7.7256 |
No.12 | 6.8462 | 7.3881 | 7.0322 | 7.4631 | 6.4893 | 6.9610 | 7.3525 | 7.7023 |
Algorithm | Cost (Seconds) | Module | Cost (Seconds) |
---|---|---|---|
ICM | 118.83 | ||
RCP | 77.03 | ||
RGHS | 155.89 | ||
MSRCR | 56.76 | ||
Funie-Gan | 5.70 | ||
UIE-CNN | 6.65 | ||
Proposed | 165.05 | Color Restoration Module | 153.27 |
End-to-end Defogging Module | 10.67 | ||
Brightness Equalization Module | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Luo, W. Underwater Image Enhancement Using Improved CNN Based Defogging. Electronics 2022, 11, 150. https://doi.org/10.3390/electronics11010150
Zheng M, Luo W. Underwater Image Enhancement Using Improved CNN Based Defogging. Electronics. 2022; 11(1):150. https://doi.org/10.3390/electronics11010150
Chicago/Turabian StyleZheng, Meicheng, and Weilin Luo. 2022. "Underwater Image Enhancement Using Improved CNN Based Defogging" Electronics 11, no. 1: 150. https://doi.org/10.3390/electronics11010150
APA StyleZheng, M., & Luo, W. (2022). Underwater Image Enhancement Using Improved CNN Based Defogging. Electronics, 11(1), 150. https://doi.org/10.3390/electronics11010150