An Improved RCS Calculation Method for Power Lines Combining Characteristic Mode with SMWA
Abstract
:1. Introduction
- (1)
- An efficient solution algorithm combining the CM with the SMWA is proposed.
- (2)
- The proposed CM-SMWA is applied to the RCS simulation of power lines.
2. Calculating the RCS of Power Lines by MoM
3. Characteristic Mode Method
3.1. Characteristic Mode
3.2. An Extended Method for Computing CMs
4. CM-SMWA for Calculating RCS
4.1. Single-Level CM-SMWA
4.2. Multi-Level CM-SMWA
5. Numerical Simulation Results and Analysis
5.1. Simulated Models
- (1)
- Simulated simple cylinder
- (2)
- Simulated power lines
5.2. Evaluation Indicators
5.3. Numerical Calculation Comparison
- (1)
- Simulated simple cylinder
- (2)
- Simulated power lines
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrasekaran, R.; Payan, A.P.; Collins, K.B. Helicopter Wire Strike Protection And Prevention Devices: Review, Challenges, And Recommendations. Aerosp. Sci. Technol. 2020, 98, 105665. [Google Scholar] [CrossRef]
- Kumar, B.A.; Ghose, D. Radar-Assisted Collision Avoidance/Guidance Strategy for Planar Flight. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Goshi, D.S.; Case, T.J.; Mckitterick, J.B.; Long, Q.B. Multifunctional Millimeter Wave Radar System for Helicopter Safety. Proc. SPIE—Int. Soc. Opt. Eng. 2012, 8361, 173. [Google Scholar]
- Yonemoto, N.; Yamamoto, K.; Yamada, K.; Yasui, H.; Pichot, C. Performance of Obstacle Detection and Collision Warning System for Civil Helicopters. Proc. SPIE—Int. Soc. Opt. Eng. 2006, 6226, 71–78. [Google Scholar]
- Migliaccio, C.; Nguyen, B.D.; Pichot, C.; Yonemoto, N.; Yamamoto, K.; Yamada, K.; Nasui, H.; Mayer, W.; Gronau, A.; Menzel, W. Millimeter-Wave Radar for Rescue Helicopters. In Proceedings of the International Conference on Control, Singapore, 5–8 December 2006; pp. 1–6. [Google Scholar]
- Goshi, D.S.; Mai, K.; Liu, Y.; Bui, L. A Millimeter-Wave Sensor Development System for Small Airborne Platforms. In Proceedings of the IEEE National Radar Conference Proceedings, Atlanta, GA, USA, 7–11 May 2012; pp. 510–515. [Google Scholar]
- Kwag, Y.K.; Chung, C.H. UAV Based Collision Avoidance Radar Sensor. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 639–642. [Google Scholar]
- Yamaguchi, H. Radar Cross Section Measurements for Collision Avoidance with Power Transmission Line at Millimeter-Wave Frequencies. In Proceedings of the Radar Conference, Waltham, MA, USA, 22–22 April 1999; pp. 148–153. [Google Scholar]
- Sarabandi, K.; Park, M. Millimeter-Wave Radar Phenomenology of Power Lines and a Polarimetric Detection Algorithm. IEEE Trans. Antennas Propag. 1999, 47, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
- Sarabandi, K.; Park, M. Extraction of Power Line Maps from Millimeter-Wave Polarimetric SAR Images. IEEE Trans Antennas Propag. 2000, 48, 1802–1809. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Luo, J.; Yu, C. Power Line Detection in Millimetre-Wave Radar Images Applying Convolutional Neural Networks. IET Radar Sonar Navig. 2021, 15, 1083–1095. [Google Scholar] [CrossRef]
- Qirong, M.; Darren, S.G.; Yi-Chi, S.; Ming-Ting, S. An Algorithm for Power Line Detection and Warning Based on a Millimeter-Wave Radar Video. IEEE Trans. Image Processing 2011, 20, 3534–3543. [Google Scholar] [CrossRef]
- Al-Khatib, H.H. Laser and Millimeter-Wave Backscatter of Transmission Cables. In Proceedings of the Technical Symposium, Washington, DC, USA, 13–15 October 1982. [Google Scholar]
- Sarabandi, K.; Park, M. A Radar Cross-Section Model for Power Lines at Millimeter-Wave Frequencies. IEEE Trans. Antennas Propag. 2003, 51, 2353–2360. [Google Scholar] [CrossRef] [Green Version]
- Harrington, R.F. Field Computation by Moment Methods; Macmillan: New York, NY, USA, 1969. [Google Scholar]
- Harrington, R.F. The Method of Moments in Electromagnetics. J. Electromagn. Waves Appl. 1987, 1, 181–200. [Google Scholar] [CrossRef]
- Gibson, W.C. The Method of Moments in Electromagnetics; Taylor & Francis: New York, NY, USA, 2021. [Google Scholar]
- Eskelinen, P. Fast and Efficient Algorithms in Computational Electromagnetics [Book Review]. IEEE Aerosp. Electron. Syst. Mag. 2002, 17, 41–42. [Google Scholar] [CrossRef]
- Kalfa, M.; Ergül, Ö.; Ertürk, V.B. Error Control of Multiple-Precision MLFMA. IEEE Trans. Antennas Propag. 2018, 66, 5651–5656. [Google Scholar] [CrossRef]
- Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T. AIM: Adaptive Integral Method for Solving Large-Scale Electromagnetic Scattering and Radiation Problems. Radio Sci. 1996, 31, 1225–1251. [Google Scholar] [CrossRef]
- Sharma, S.; Triverio, P. AIMx: An Extended Adaptive Integral Method for the Fast Electromagnetic Modeling of Complex Structures. IEEE Trans. Antennas Propag. 2021, 69, 8603–8617. [Google Scholar] [CrossRef]
- Phillips, J.R.; White, J.K. A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1997, 16, 1059–1072. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.M. A Fast IE-FFT Algorithm to Analyze Electrically Large Planar Microstrip Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 983–987. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Theory of Characteristic Modes for Conducting Bodies. IEEE Trans. Antennas Propag. 1971, 19, 622–628. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Computation of Characteristic Modes for Conducting Bodies. IEEE Trans. Antennas Propag. 1971, 19, 629–639. [Google Scholar] [CrossRef]
- Angiulli, G.; Amendola, G.; Di Massa, G. Application of Characteristic Modes to the Analysis of Scattering from Microstrip Antennas. J. Electromagn. Waves Appl. 2000, 14, 1063–1081. [Google Scholar] [CrossRef]
- Guan, L.; He, Z.; Ding, D.; Chen, R. Efficient Characteristic Mode Analysis for Radiation Problems of Antenna Arrays. IEEE Trans. Antennas Propag. 2019, 67, 199–206. [Google Scholar] [CrossRef]
- Chen, X.; Gu, C.; Zhuo, L.; Niu, Z. Accelerated Direct Solution of Electromagnetic Scattering via Characteristic Basis Function Method With Sherman-Morrison-Woodbury Formula-Based Algorithm. IEEE Trans. Antennas Propag. 2016, 64, 4482–4486. [Google Scholar] [CrossRef]
- Fang, X.; Cao, Q.; Zhou, Y.; Yi, W. Multiscale Compressed and Spliced Sherman–Morrison–Woodbury Algorithm With Characteristic Basis Function Method. IEEE Trans. Electromagn. Compat. 2017, 60, 716–724. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Ding, D.; Chen, R. A Parallelizable Direct Solution of Integral Equation Methods for Electromagnetic Analysis. Eng. Anal. Bound. Elem. 2017, 85, 158–164. [Google Scholar] [CrossRef]
- Rong, Z.; Jiang, M.; Chen, Y.; Lei, L.; Li, X.; Nie, Z.; Hu, J. Fast Direct Solution of Integral Equations with Modified HODLR Structure for Analyzing Electromagnetic Scattering Problems. IEEE Trans. Antennas Propag. 2019, 67, 3288–3296. [Google Scholar] [CrossRef]
- Rao, S.; Wilton, D.; Glisson, A. Electromagnetic Scattering by Surfaces of Arbitrary Shape. IEEE Trans. Antennas Propag. 1982, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Prakash, V.; Mittra, R. Characteristic Basis Function Method: A New Technique for Efficient Solution of Method of Moments Matrix Equations. Microw. Opt. Techn. Lett. 2003, 36, 95–100. [Google Scholar] [CrossRef]
- Bebendorf, M. Approximation of Boundary Element Matrices. Numer. Math. 2000, 86, 565–589. [Google Scholar] [CrossRef]
- Zhao, K.; Vouvakis, M.N.; Lee, J.-F. The Adaptive Cross Approximation Algorithm for Accelerated Method of Moments Computations of EMC problems. IEEE Trans. Electromagn. Compat. 2005, 47, 763–773. [Google Scholar] [CrossRef]
- Hager, W.W. Updating the inverse of a matrix. SIAM Rev. 1989, 31, 221–239. [Google Scholar] [CrossRef]
- Kohmura, A.; Yonemoto, N.; Futatsumori, S.; Morioka, K. Evaluation of Polarisation Characteristics of Power-Line RCS at 76 GHz for Helicopter Obstacle Detection. Electron. Lett. 2015, 51, 1110–1111. [Google Scholar]
- Ziegler, V.; Schubert, F.; Schulte, B.; Giere, A.; Koerber, R. Helicopter Near-Field Obstacle Warning System Based on Low-Cost Millimeter-Wave Radar Technology. IEEE Trans. Microw. Theory Tech. 2013, 61, 658–665. [Google Scholar] [CrossRef]
Model | ||
---|---|---|
Cylinder | 20 m | 0.4 m |
Model | Steel Core | Outer Aluminum Strand/d | Diameter D | P | |
---|---|---|---|---|---|
LGJ50-8 | 1 | 6/3.2 mm | 9.55 mm | 138 mm | 23 mm |
Method | Total Time | RMSE | Z-Matrix Memory | CM Memory |
---|---|---|---|---|
MoM | 31 s | -- | 1104 MB | -- |
CM method | 31 s | 0.234 | 19 MB | 4.5 MB |
CM-SMWA | 28 s | 0.230 | 8 MB | 4.5 MB |
Methods | Total Time | RMSE (H-H) | RMSE (V-V) | Z-Matrix Memory | CM Memory |
---|---|---|---|---|---|
MoM | 17.3 min | -- | -- | 18,530 MB | -- |
CM method | 26.4 min | 0.47 | 0.25 | 5648 MB | 160 MB |
CM-SMWA | 6.5 min | 0.59 | 0.24 | 505 MB | 160 MB |
Methods | Total Time | Z-Matrix Memory | CM Memory |
---|---|---|---|
MoM | 224 min | 99.8 GB | -- |
CM | 171 min | 22.6 GB | 375 MB |
CM-SMWA | 41 min | 2.1 GB | 375 MB |
Method | Total Time | Z-Matrix Memory | CM Memory |
---|---|---|---|
CM-SMWA | 76 min | 4.8 GB | 524 MB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yang, F.; Hu, C.; Zhou, J. An Improved RCS Calculation Method for Power Lines Combining Characteristic Mode with SMWA. Electronics 2022, 11, 2051. https://doi.org/10.3390/electronics11132051
Chen C, Yang F, Hu C, Zhou J. An Improved RCS Calculation Method for Power Lines Combining Characteristic Mode with SMWA. Electronics. 2022; 11(13):2051. https://doi.org/10.3390/electronics11132051
Chicago/Turabian StyleChen, Chunfeng, Fan Yang, Changyu Hu, and Jianjiang Zhou. 2022. "An Improved RCS Calculation Method for Power Lines Combining Characteristic Mode with SMWA" Electronics 11, no. 13: 2051. https://doi.org/10.3390/electronics11132051
APA StyleChen, C., Yang, F., Hu, C., & Zhou, J. (2022). An Improved RCS Calculation Method for Power Lines Combining Characteristic Mode with SMWA. Electronics, 11(13), 2051. https://doi.org/10.3390/electronics11132051