Pulsar Candidate Recognition Using Deep Neural Network Model
Abstract
:1. Introduction
2. AR_Net Model
3. Experiments and Result Analysis
3.1. Features and Dataset
3.2. Evaluation Metrics
3.3. Implementation
3.4. Results and Analysis
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manchester, R.N.; Lyne, A.G.; Camilo, F.; Bell, J.F.; Kaspi, V.M.; D’mico, N.; McKay, N.P.F.; Crawford, F.; Stairs, I.H.; Possenti, A.; et al. The Parkes multi-beam pulsar survey- Observing and data analysis systems, discovery and timing of 100 pulsars. Mon. Not. R. Astron. Soc. 2001, 328, 17–35. [Google Scholar] [CrossRef]
- Boyles, J.; Lynch, R.S.; Ransom, S.M.; Stairs, I.H.; Lorimer, D.R.; McLaughlin, M.A.; Hessels, J.W.; Kaspi, V.M.; Kondratiev, V.I.; Archibald, A.; et al. The green bank telescope 350 MHz drift-scan survey-Survey observations and the discovery of 13 pulsars. Astrophys. J. 2012, 763, 36. [Google Scholar] [CrossRef]
- Champion, D.J.; Petroff, E.; Kramer, M.; Keith, M.J.; Bailes, M.; Barr, E.D.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.A.R.T.A.; Burke-Spolaor, S.; et al. Five new fast radio bursts from the HTRU high-latitude survey at Parkes: First evidence for two-component bursts. Mon. Not. R. Astron. Soc. 2016, 460, L30–L34. [Google Scholar] [CrossRef] [Green Version]
- Nan, R.; Li, D.; Jin, C.; Wang, Q.; Zhu, L.; Zhu, W.; Zhang, H.; Yue, Y.; Qian, L. The five-hundred-meter aperture spherical radio telescope (FAST) project. Int. J. Mod. Phys. D 2011, 20, 989–1024. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Yue, Y.; Gan, H.; Yao, R.; Li, H.; Pan, G.; Sun, J.; Yu, D.; Liu, H.; Tang, N.; et al. Commissioning progress of the FAST. Sci. China Phys. Mech. Astron. 2019, 62, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, A.J.; Stairs, I.H.; Kramer, M.; Lyne, A.G.; Hobbs, G.; Possenti, A.; Lorimer, D.R.; Manchester, R.N.; McLaughlin, M.A.; D‘Amico, N.; et al. The parkes multibeam pulsar survey–V. Finding binary and millisecond pulsars. Mon. Not. R. Astron. Soc. 2004, 355, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Burgay, M.; Joshi, B.C.; D’Amico, N.; Possenti, A.; Lyne, A.G.; Manchester, R.N.; McLaughlin, M.A.; Kramer, M.; Camilo, F.; Freire, P.C.C. The parkes high-latitude pulsar survey. Mon. Not. R. Astron. Soc. 2006, 368, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.J.; Eatough, R.P.; Lyne, A.G.; Kramer, M.; Possenti, A.; Camilo, F.; Manchester, R.N. Discovery of 28 pulsars using new techniques for sorting pulsar candidates. Mon. Not. R. Astron. Soc. 2009, 395, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Bates, S.D.; Bailes, M.; Barsdell, B.R.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.J.; Coster, P.; D’Amico, N.; Jameson, A.; et al. The high time resolution universe pulsar survey—VI. An artificial neural network and timing of 75 pulsars. Mon. Not. R. Astron. Soc. 2012, 427, 1052–1065. [Google Scholar] [CrossRef]
- Eatough, R.P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M.J.; Stappers, B.W.; Lyne, A.G. Selection of radio pulsar candidates using artificial neural networks. Mon. Not. R. Astron. Soc. 2010, 407, 2443–2450. [Google Scholar] [CrossRef] [Green Version]
- Morello, V.; Barr, E.D.; Bailes, M.; Flynn, C.M.; Keane, E.F.; van Straten, W. SPINN: A straightforward machine learning solution to the pulsar candidate selection problem. Mon. Not. R. Astron. Soc. 2014, 443, 1651–1662. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Stovall, K.; Jenet, F.A.; Martinez, J.; Dartez, L.P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C.M.; Rohr, M.; et al. PEACE: Pulsar evaluation algorithm for candidate extraction–a software package for post-analysis processing of pulsar survey candidates. Mon. Not. R. Astron. Soc. 2013, 433, 688–694. [Google Scholar] [CrossRef]
- Mohamed, T. Pulsar selection using fuzzy knn classifier. Future Comput. Inform. J. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Lyon, R.J.; Stappers, B.W.; Cooper, S.; Brooke, J.M.; Knowles, J.D. Fifty years of pulsar candidate selection: From simple filters to a new principled real-time classification approach. Mon. Not. R. Astron. Soc. 2016, 459, 1104–1123. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.M.; Lyon, R.J.; Stappers, B.W.; Cooper, S.; Hessels, J.W.T.; Kondratiev, V.I.; Michilli, D.; Sanidas, S. Ensemble candidate classification for the LOTAAS pulsar survey. Mon. Not. R. Astron. Soc. 2018, 474, 4571–4583. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.W.; Berndsen, A.; Madsen, E.C.; Tan, M.; Stairs, I.H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; et al. Searching for pulsars using image pattern recognition. Astrophys. J. 2014, 781, 117–129. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, H.; Zhu, W.; Guo, P.; Li, D.; Feng, S.; Yin, Q.; Miao, C.; Tao, Z.; Pan, Z.; Wang, P.; et al. Pulsar candidate selection using ensemble networks for FAST drift-scan survey. Sci. China Phys. Mech. Astron. 2019, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Duan, F.; Wang, P.; Yao, Y.; Yin, Q.; Xin, X.; Li, D.; Qian, L.; Wang, S.; Pan, Z.; et al. Pulsar candidate classification using generative adversary networks. Mon. Not. R. Astron. Soc. 2019, 490, 5424–5439. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Bao, Z.; Yin, Q.; Guo, P. Pulsar identification based on variational autoencoder and residual network. In Proceedings of the 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP), Dali, China, 3–7 December 2021; pp. 188–194. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Classifier | Number of Features | Type of Features |
---|---|---|
ANN [9] | 22 | Empirical feature |
ANN [10] | 12 | Empirical feature |
SPINN | 6 | Empirical feature |
GH-VFDT, Fuzzy KNN | 8 | Statistic feature |
PEACE | 6 | Statistic feature |
PICS, PICS-ResNet | 4 | Image features |
DCGAN-SVM, ResNet, AR-Net | 1 | Image features |
Outcomes | Prediction + | Prediction − |
---|---|---|
Ground-truth + | True Positive (TP) | False Positive (FN) |
Ground-truth − | False Positive (FP) | True Negative (TN) |
Method | F1-Score | Recall | Precision |
---|---|---|---|
RBF_SVM-bands | 0.813 | 0.798 | 0.828 |
CNN-bands | 0.879 | 0.879 | 0.880 |
DCGAN_SVM-bands | 0.886 | 0.891 | 0.881 |
ResNet-bands | 0.912 | 0.873 | 0.955 |
AR_Net-bands | 0.9981 | 0.9988 | 0.9975 |
RBF_SVM-ints | 0.820 | 0.806 | 0.835 |
CNN-ints | 0.883 | 0.886 | 0.881 |
DCGAN_SVM-ints | 0.889 | 0.895 | 0.885 |
ResNet-ints | 0.924 | 0.914 | 0.936 |
AR_Net-ints | 0.9975 | 0.9988 | 0.9963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Q.; Wang, Y.; Zheng, X.; Zhang, J. Pulsar Candidate Recognition Using Deep Neural Network Model. Electronics 2022, 11, 2216. https://doi.org/10.3390/electronics11142216
Yin Q, Wang Y, Zheng X, Zhang J. Pulsar Candidate Recognition Using Deep Neural Network Model. Electronics. 2022; 11(14):2216. https://doi.org/10.3390/electronics11142216
Chicago/Turabian StyleYin, Qian, Yan Wang, Xin Zheng, and Jikai Zhang. 2022. "Pulsar Candidate Recognition Using Deep Neural Network Model" Electronics 11, no. 14: 2216. https://doi.org/10.3390/electronics11142216
APA StyleYin, Q., Wang, Y., Zheng, X., & Zhang, J. (2022). Pulsar Candidate Recognition Using Deep Neural Network Model. Electronics, 11(14), 2216. https://doi.org/10.3390/electronics11142216