A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression
Abstract
:1. Introduction
- (1)
- By analyzing data streaming clustering, the necessity for optimizing LZW algorithm is given. Inspired by the CluStream framework [11,12], a one-pass online clustering strategy is described in detail. In the cluster process, the CH and outlier number will be increased due to the abnormal data fluctuation. Thus, an improved LZW algorithm which can reduce compression time should be researched.
- (2)
- Analyze the limitation of CS-based parallel search strategy of LZW algorithm. The performance of this algorithm is better than serial search strategy and parallel search strategy [10]. However, the effectiveness of this algorithm is limited by the dictionary matching results.
- (3)
- An MCS-based LZW algorithm is proposed to reduce data compression time. An MCS-based LZW algorithm designs coding principle, dictionary update rule, and search strategy according to the character string matching results. This algorithm can effectively reduce dictionary search times and compression time.
2. Problem Formulation
2.1. Telemetry Data Characteristics
2.2. D-CLU Compression Algorithm
2.3. Analysis of Data Streaming Clustering Algorithm and the Problem Formulation
3. Methodology
3.1. Analyses of CS-Based LZW Algorithm
3.2. MCS-Based LZW Algorithm
3.2.1. Coding Principle
3.2.2. Dictionary Update Rules
3.2.3. Selection of
3.2.4. Complexity Analyses
4. Implementations
4.1. Example Verification
4.2. MATLAB Implementations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giannini, A.; Pelorossi, F.; Pasian, M.; Bozzi, M.; Perregrini, L.; Besso, P.; Garramone, L. The Sardinia Radio Telescope Upgrade to Telemetry, Tracking and Command: Beam Squint and Electromagnetic Compatibility Design. IEEE Antennas Propag. Mag. 2015, 57, 177–191. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.; Wu, B. Study on Threats to Security of Space TT&C Systems. In Proceedings of the 26th Conference of Spacecraft TT&C Technology in China; Springer: Berlin/Heidelberg, Germany, 2013; pp. 67–73. [Google Scholar]
- Beglaryan, G. Lossless Compression of Aerospace Telemetry Data for a Narrow-Band Downlink. Ph.D. Thesis, California State University, Northridge, CA, USA, 2014. [Google Scholar]
- Abraham, J.G.; Mishra, R.; Deepa, J. A lossless compression algorithm for vibration data of space systems. In Proceedings of the International Conference on Next Generation Intelligent Systems, Kottayam, India, 1–3 September 2016; pp. 1–7. [Google Scholar]
- CCSDS 121.0-B-2; CCSDS, Lossless Data Compression. Recommendation for Space Data Systems Standards. Blue Book: Washington, DC, USA, May 2012.
- Li, G.; Zhang, R.; Shi, J. Lossless data compression algorithm for aerospace packet telemetry data. In Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, Shenyang, China, 20–22 December 2013; pp. 2756–2759. [Google Scholar]
- Shi, X.; Shen, Y.; Wang, Y.; Bai, L. Differential-Clustering Compression Algorithm for Real-Time Aerospace Telemetry Data. IEEE Access 2019, 6, 57425–57433. [Google Scholar] [CrossRef]
- Ling, C.; Zou, L.J.; Tu, L. A clustering algorithm for multiple data streams based on spectral component similarity. Inf. Sci. 2012, 183, 35–47. [Google Scholar]
- Laarman, A.; Pol, J.; Weber, M. Parallel Recursive State Compression for Free. In International Spin Conference on Model Checking Software; Springer: Berlin/Heidelberg, Germany, 2017; pp. 38–56. [Google Scholar]
- Liu, M. Research and Implementation of Lossless Compression Technique for Space Telemetry Data. Master’s Thesis, Beijing Institute of Technology, Beijing, China, 2016; pp. 24–28. [Google Scholar]
- Sangam, R.S.; Om, H. Equi-clustream: A framework for clustering time evolving mixed data. Adv. Data Anal. Classif. 2018, 12, 973–995. [Google Scholar] [CrossRef]
- Sayed, D.; Rady, S.; Aref, M. Enhancing clustream algorithm for clustering big data streaming over sliding window. In Proceedings of the International Conference on Electrical Engineering, Cairo, Egypt, 7–9 July 2020; pp. 108–114. [Google Scholar]
- Solanki, S.K.; Patel, J.T. A Survey Paper on Parallel Power Iteration Clustering for Big Data. Intern. J. Innov. Res. Technol. 2014, 1, 1–5. [Google Scholar]
- Ibrahim, A.; Hassanien, R. Homogenous and Heterogenous Parallel Clustering: An Overview. arXiv 2022, arXiv:2202.06478. [Google Scholar]
- Xin, D.; Pi, D. An Effective Method for Mining Quantitative Association Rules with Clustering Partition in Satellite Telemetry Data. In Proceedings of the International Conference on Advanced Cloud and Big Data, Huangshan, China, 20–22 November 2014; pp. 26–33. [Google Scholar]
- Hahsler, M.; Bolaños, M. Clustering Data Streams Based on Shared Density between Micro-Clusters. IEEE Trans. Knowl. Data Eng. 2016, 28, 1449–1461. [Google Scholar] [CrossRef]
Dictionary Update | |||
---|---|---|---|
000 | |||
001 | |||
010 | |||
011 | |||
100 | No update | No output | |
101 | No update | No output | |
110 | No update | No output | |
111 | No update | No output |
Dictionary Update | |||
---|---|---|---|
000 | |||
001 | |||
010 | |||
011 | |||
100 | |||
101 | No update | ||
110 | |||
111 | No update |
Searching CS | Dictionary | ||
---|---|---|---|
{23,25}{25,34}{34,45} | 000 | (256) = {23,25}, (257) = {25,34}, (258) = {34,45} | 23, 25, 34 |
{45,56}{56,85}{85,23} | 000 | (259) = {45,56}, (260) = {56,85}, (261) = {85,23} | 45, 56, 85 |
{23,25}{25,34}{34,45} | 111 | No update | 256, 258 |
{56,85}{85,22}{22,26} | 100 | (262) = {22,26} | 260, 22 |
{26,28}{28,85}{85,22} | 000 | (263) = {26,28}, (264) = {28,85}, (265) = {85,22} | 26, 28, 85 |
{22,26}{26,28}{28,30} | 110 | (266) = {28,30} | 262, 28 |
{30,34}{34,-}{-,-} | 0-- | (267) = {30,34} | 30, 34, - |
Input CS | Output | Dictionary | Input CS | Output | Dictionary |
---|---|---|---|---|---|
{23,25} | 23 | D(256) = {23,25} | {22,26} | 22 | (262) = {22,26} |
{25,34} | 25 | D(257) = {25,34} | {26,28} | 26 | (263) = {26,28} |
{34,45} | 34 | (258) = {34,45} | {28,85} | 28 | (264) = {28,85} |
{45,56} | 45 | D(259) = {45,56} | {85,262} | 85 | (265) = {85,22} |
{56,85} | 56 | D(260) = {56,85} | {262,28} | 22,26 | No update |
{85,256} | 85 | (261) = {85,23} | {28,30} | 28 | (266) = {28,30} |
{256,258} | 23,25 | No update | {30,34} | 30 | (267) = {30,34} |
{258,260} | 34,45 | No update | {34,-} | 34 | -- |
{260,22} | 56,85 | No update | -- | -- | -- |
D-1 | D-2 | D-3 | D-4 | D-5 | D-6 | D-7 | D-8 | D-9 | D-10 | D-11 | D-12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conventional LZW | 28.47 | 32.46 | 29.52 | 41.24 | 30.12 | 35.28 | 32.11 | 28.76 | 33.13 | 31.26 | 29.15 | 28.43 |
CS-based LZW | 29.43 | 33.24 | 30.15 | 42.13 | 32.71 | 36.2 | 33.09 | 29.08 | 33.14 | 31.27 | 31.24 | 29.05 |
MCS-based LZW | 29.31 | 33.24 | 31.07 | 42.25 | 33.02 | 36.43 | 33.41 | 30.1 | 33.25 | 32.11 | 31.35 | 30.16 |
D-1 | D-2 | D-3 | D-4 | D-5 | D-6 | D-7 | D-8 | D-9 | D-10 | D-11 | D-12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No LZW | 45.31 | 47.16 | 45.79 | 47.21 | 46.92 | 47.24 | 42.16 | 41.02 | 43.18 | 41.54 | 40.89 | 42.38 |
Conventional LZW | 50.21 | 51.34 | 49.05 | 50.76 | 48.37 | 51.54 | 46.8 | 45.9 | 44.7 | 45.2 | 45.1 | 46.3 |
CS-based LZW | 51.2 | 51.52 | 49.55 | 51.17 | 48.16 | 50.84 | 46.95 | 45.25 | 45.17 | 44.16 | 45.12 | 46.98 |
MCS-based LZW | 51.51 | 51.54 | 50.23 | 51.98 | 48.53 | 51.61 | 47.08 | 46.16 | 45.38 | 45.51 | 45.31 | 47.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Shi, X.; Wang, Y. A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression. Electronics 2022, 11, 2656. https://doi.org/10.3390/electronics11172656
He Y, Shi X, Wang Y. A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression. Electronics. 2022; 11(17):2656. https://doi.org/10.3390/electronics11172656
Chicago/Turabian StyleHe, Yigen, Xuesen Shi, and Yongqing Wang. 2022. "A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression" Electronics 11, no. 17: 2656. https://doi.org/10.3390/electronics11172656
APA StyleHe, Y., Shi, X., & Wang, Y. (2022). A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression. Electronics, 11(17), 2656. https://doi.org/10.3390/electronics11172656