The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization
Abstract
:1. Introduction
- (1)
- Optimize the greedy algorithm using secondary advantage mechanism to balance the flight time and the importance of mission points.
- (2)
- Optimize the flight path using the ant colony algorithm to reduce the UAV flight time.
2. Related Work
3. System Model
3.1. Environmental Model
3.2. Model Formulation
3.3. PCBGA Algorithm
Algorithm Description
Algorithm 1 PCBGA Algorithm |
Input: Mission point set: ; Weight set: ; |
Output: Flight path set: ; Task completion time: ; Coverage rate: μ |
4. Simulation
4.1. Simulation Model
4.2. PCBGA Algorithm for Path Planning on Heat Map
4.3. Performance Comparison of the Three Algorithms
4.3.1. Comparison with Different Number of Mission Points
4.3.2. Comparison with Different Number of UAVs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paden, B.; Cap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Hu, X. Cooperative Path Planning of UAVs & UGVs for a Persistent Surveillance Task in Urban Environments. IEEE Internet Things J. 2021, 8, 4906–4919. [Google Scholar] [CrossRef]
- Muñoz, J.; López, B.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E. Multi UAV Coverage Path Planning in Urban Environments. Sensors 2021, 21, 7365. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, K.; Senthilnath, J.; Sundaram, S. Multi-UAV Oxyrrhis Marina-Inspired Search and Dynamic Formation Control for Forest Firefighting. IEEE Trans. Autom. Sci. Eng. 2019, 16, 863–873. [Google Scholar] [CrossRef]
- Al-Kaff, A.; Madridano, Á.; Campos, S.; García, F.; Martín, D.; de la Escalera, A. Emergency Support Unmanned Aerial Vehicle for Forest Fire Surveillance. Electronics 2020, 9, 260. [Google Scholar] [CrossRef]
- Wang, H.; Du, H. Time Sensitive Sweep Coverage with Minimum UAVs. Theor. Comput. Sci. 2022, 928, 197–209. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Y.; She, J.; Wu, M. A Path Planning Method for Sweep Coverage With Multiple UAVs. IEEE Internet Things J. 2020, 7, 8967–8978. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput. Commun. 2020, 149, 270–299. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Julius Fusic, S.; Ramkumar, P.; Hariharan, K. Path Planning of Robot Using Modified Dijkstra Algorithm. In Proceedings of the 2018 National Power Engineering Conference (NPEC), Madurai, India, 9 March 2018. [Google Scholar]
- Zammit, C.; van Kampen, E.-J. Comparison Between A* and RRT Algorithms for 3D UAV Path Planning. Unmanned Syst. 2022, 10, 129–146. [Google Scholar] [CrossRef]
- Shivgan, R.; Dong, Z. Energy-Efficient Drone Coverage Path Planning Using Genetic Algorithm. In Proceedings of the 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), Newark, NJ, USA, 11 May 2020. [Google Scholar]
- Sharma, A. Swarm Intelligence: Foundation, Principles, and Engineering Applications, 1st ed.; Mathematical Engineering, Manufacturing, and Management Sciences; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-0-367-54661-8. [Google Scholar]
- Sharma, A.; Shoval, S.; Sharma, A.; Pandey, J.K. Path Planning for Multiple Targets Interception by the Swarm of UAVs based on Swarm Intelligence Algorithms: A Review. IETE Tech. Rev. 2022, 39, 675–697. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Yang, X.S. Bat Algorithm for Multi-Objective Optimisation. Int. J. Bio-Inspired Comput. 2011, 3, 267. [Google Scholar] [CrossRef]
- Liu, C.; Mao, Q.; Chu, X.; Xie, S. An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning. Appl. Sci. 2019, 9, 1057. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H. Dynamics-Constrained Global-Local Hybrid Path Planning of an Autonomous Surface Vehicle. IEEE Trans. Veh. Technol. 2020, 69, 6928–6942. [Google Scholar] [CrossRef]
- Gao, S.; Wu, J.; Ai, J. Multi-UAV Reconnaissance Task Allocation for Heterogeneous Targets Using Grouping Ant Colony Optimization Algorithm. Soft Comput. 2021, 25, 7155–7167. [Google Scholar] [CrossRef]
- Chen, X.; Gao, P. Path Planning and Control of Soccer Robot Based on Genetic Algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 11, 6177–6186. [Google Scholar] [CrossRef]
- Pehlivanoglu, Y.V.; Pehlivanoglu, P. An Enhanced Genetic Algorithm for Path Planning of Autonomous UAV in Target Coverage Problems. Appl. Soft Comput. 2021, 112, 107796. [Google Scholar] [CrossRef]
- Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A Novel Hybrid Grey Wolf Optimizer Algorithm for Unmanned Aerial Vehicle (UAV) Path Planning. Knowl.-Based Syst. 2020, 194, 105530. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, F.; Fang, X.; Lan, Z. Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space. IEEE Access 2021, 9, 20100–20116. [Google Scholar] [CrossRef]
- Jayaweera, H.M.; Hanoun, S. A Dynamic Artificial Potential Field (D-APF) UAV Path Planning Technique for Following Ground Moving Targets. IEEE Access 2020, 8, 192760–192776. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Shin, H.; Chae, J. A Performance Review of Collision-Free Path Planning Algorithms. Electronics 2020, 9, 316. [Google Scholar] [CrossRef]
- Song, J.; Hao, C.; Su, J. Path Planning for Unmanned Surface Vehicle Based on Predictive Artificial Potential Field. Int. J. Adv. Robot. Syst. 2020, 17, 172988142091846. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, R.; Zhang, Y.; Yan, M.; Yue, L. Deep Reinforcement Learning for Intelligent Dual-UAV Reconnaissance Mission Planning. Electronics 2022, 11, 2031. [Google Scholar] [CrossRef]
- Gopi, S.P.; Magarini, M. Reinforcement Learning Aided UAV Base Station Location Optimization for Rate Maximization. Electronics 2021, 10, 2953. [Google Scholar] [CrossRef]
- Chang, B.R.; Tsai, H.-F.; Lyu, J.-L. Drone-Aided Path Planning for Unmanned Ground Vehicle Rapid Traversing Obstacle Area. Electronics 2022, 11, 1228. [Google Scholar] [CrossRef]
- Cabreira, T.; Brisolara, L.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef]
- Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.-Y. Coverage Path Planning for Multiple Unmanned Aerial Vehicles in Maritime Search and Rescue Operations. Comput. Ind. Eng. 2021, 161, 107612. [Google Scholar] [CrossRef]
- Ahmadi, S.M.; Kebriaei, H.; Moradi, H. Constrained Coverage Path Planning: Evolutionary and Classical Approaches. Robotica 2018, 36, 904–924. [Google Scholar] [CrossRef]
- Bähnemann, R.; Lawrance, N.; Chung, J.J.; Pantic, M.; Siegwart, R.; Nieto, J. Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem. In Field and Service Robotics; Springer: Singapore, 2021; Volume 16, pp. 277–290. [Google Scholar]
- Cabreira, T.M.; Ferreira, P.R.; Franco, C.D.; Buttazzo, G.C. Grid-Based Coverage Path Planning With Minimum Energy Over Irregular-Shaped Areas With Uavs. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11 June 2019. [Google Scholar]
- Biundini, I.Z.; Pinto, M.F.; Melo, A.G.; Marcato, A.L.M.; Honório, L.M.; Aguiar, M.J.R. A Framework for Coverage Path Planning Optimization Based on Point Cloud for Structural Inspection. Sensors 2021, 21, 570. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, J.B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem. Oper. Res. Forum 2022, 3, 20. [Google Scholar] [CrossRef]
- Gao, X.; Fan, J.; Wu, F.; Chen, G. Approximation Algorithms for Sweep Coverage Problem With Multiple Mobile Sensors. IEEEACM Trans. Netw. 2018, 26, 990–1003. [Google Scholar] [CrossRef]
- Liu, C.; Du, H.; Ye, Q. Sweep Coverage with Return Time Constraint. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar] [CrossRef]
- Jembre, Y.Z.; Nugroho, Y.W.; Khan, M.T.R.; Attique, M.; Paul, R.; Shah, S.H.A.; Kim, B. Evaluation of Reinforcement and Deep Learning Algorithms in Controlling Unmanned Aerial Vehicles. Appl. Sci. 2021, 11, 7240. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
Reference | Global Path Planning | Local Path Planning | 1 | 2 | 3 |
---|---|---|---|---|---|
Paden et al. [1] | - | - | - | - | - |
Wu et al. [2] | √ | × | √ | √ | × |
Muñoz et al. [3] | √ | √ | √ | √ | √ |
Harikumar et al. [4] | × | √ | √ | × | √ |
Al×Kaff et al. [5] | √ | × | √ | × | × |
Wang et al. [6] | √ | × | √ | √ | × |
Li et al. [7] | √ | × | √ | √ | × |
Aggarwal et al. [8] | - | - | - | - | - |
Hart et al. [9] | √ | × | √ | × | × |
Julius Fusic et al. [10] | √ | × | √ | × | × |
Zammit et al. [11] | √ | × | √ | × | × |
Shivgan et al. [12] | √ | × | √ | × | × |
Sharma et al. [13] | - | - | - | - | - |
Sharma et al. [14] | - | - | - | - | - |
Mirjalili et al. [15] | √ | × | √ | × | × |
Yang et al. [16] | √ | × | √ | × | × |
Liu et al. [17] | √ | √ | √ | × | √ |
Wang et al. [18] | √ | √ | √ | × | √ |
Gao et al. [19] | √ | × | √ | √ | × |
Chen et al. [20] | √ | √ | √ | × | √ |
Pehlivanoglu et al. [21] | √ | √ | √ | × | √ |
Qu et al. [22] | √ | × | √ | √ | × |
Zhou et al. [23] | √ | × | √ | × | × |
Jayaweera et al. [24] | × | √ | √ | × | √ |
Fox et al. [25] | × | √ | × | × | √ |
Shin et al. [26] | √ | √ | √ | × | √ |
Song et al. [27] | × | √ | √ | × | √ |
Zhao et al. [28] | - | - | - | - | - |
Zhao et al. [29] | √ | × | √ | × | × |
Gopi et al. [30] | √ | × | √ | × | × |
Chang et al. [31] | × | √ | √ | × | √ |
Cabreira et al. [32] | - | - | - | - | - |
Cho et al. [33] | √ | × | √ | √ | × |
Ahmadi et al. [34] | √ | × | √ | √ | × |
Bähnemann et al. [35] | √ | √ | √ | √ | √ |
Cabreira et al. [36] | √ | × | √ | √ | × |
Biundini et al. [37] | √ | × | √ | √ | × |
Kruskal et al. [38] | - | - | - | - | - |
Christofides et al. [39] | √ | × | √ | √ | × |
Gao et al. [40] | √ | × | √ | √ | × |
Liu et al. [41] | √ | × | √ | √ | × |
Jembre et al. [42] | √ | × | √ | × | × |
Dorigo et al. [43] | √ | × | √ | √ | × |
Definition | Symbol |
---|---|
The distance between mission points i and j. | |
UAV turning angle at mission point j. | |
The linear speed of UAV. | V |
The angular velocity of the UAV. | ω |
The flying time between mission points i and j | |
The endurance time of UAV. | |
The time consumed to return to base from point j. | |
Determining whether a UAV has exceeded its service life. | |
The flying time of the k-th UAV. | |
Task completion time. | |
The cost between mission points i and j | COSTij |
The weight of mission point. | W |
Weight of task coverage. | |
Weight of the total area. | |
Coverage rate. | |
The probability of an ant choosing a path. | |
The pheromone concentration between mission points i and j. | |
The reciprocal of the distance between mission points i and j. | |
The secondary advantage point in the COST set. | sa |
Parameters | Value |
---|---|
Region | |
The number of mission point. | |
The weight of the mission point. | |
The number of UAVs. | |
Linear velocity | |
Angular velocity | 5°/s |
Flight duration | |
Camera field of view | 73.5° × 53.1° |
Camera coverage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Zhou, S.; Zeng, Q.; Li, C.; Chen, D.; Zhang, K.; Liu, L.; Chen, Z. The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization. Electronics 2022, 11, 2667. https://doi.org/10.3390/electronics11172667
Jia Y, Zhou S, Zeng Q, Li C, Chen D, Zhang K, Liu L, Chen Z. The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization. Electronics. 2022; 11(17):2667. https://doi.org/10.3390/electronics11172667
Chicago/Turabian StyleJia, Yuheng, Shengbang Zhou, Qian Zeng, Chuanqi Li, Dong Chen, Kezhi Zhang, Liyuan Liu, and Ziyao Chen. 2022. "The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization" Electronics 11, no. 17: 2667. https://doi.org/10.3390/electronics11172667
APA StyleJia, Y., Zhou, S., Zeng, Q., Li, C., Chen, D., Zhang, K., Liu, L., & Chen, Z. (2022). The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization. Electronics, 11(17), 2667. https://doi.org/10.3390/electronics11172667