Perspective on Terahertz Applications of Molecular Crystals
Abstract
:1. Introduction
2. Classical Theory of THz Generation through Second-Order Nonlinear Processes in Crystal Sources
2.1. Pulsed THz Generation
2.2. Quasi-Continuous THz Generation
2.3. State-of-the-Art Crystal Materials for THz Generation
3. Molecular Crystals as the Sources of Phonon-Based Quasi-Pulsed Narrowband THz Generation
4. Crystallography Aspects of THz Crystal Sources
Crystal | Melting Point, °C | Weight Loss Temperature, °C | Heating Rate, K/min | Ref. |
---|---|---|---|---|
DAST | 256 | No weight loss up to 290 | not specified | [204] |
256 ± 1 | not specified | [93] | ||
257 | 140.81—first decomposition; 324—rapid decomposition | not specified | [187] | |
260.32 | no weight loss up to 300; 320—complete breakage of the stilbazolium ion | not specified | [179] | |
258.94 | 300—decomposition begins; 320—complete breakage of the stilbazolium ion | not specified | [156] | |
DSTMS | 258 ± 1 | 250—decomposition | not specified | [160] |
257.8 | 290—dehydration of DSTMS hydrate; 350—decomposition | 10 | [151] | |
OH1 | 212 | 325—sublimation and/or decomposition | 10 | [162] |
HMQ-TMS | 274 | No thermal phase transition and weight loss were observed at 280 | [163] | |
BNA | 102.01 | 20 | [153] | |
GUHP | 180 | not specified | [168] | |
182.5 | 198.5—decomposition | 5 | [169] |
5. Optical Properties of THz Crystal Sources
5.1. DAST
q | 1.645 | 0.469 | 0.234 |
2.078 | 1.585 | 1.565 | |
(nm) | 533 ± 5 | 504 ± 5 | 501 ± 5 |
(nm) | (pm/V) | (pm/V) | (pm/V) |
---|---|---|---|
1318 | 1010 ± 110 | 96 ± 9 | 53 ± 12 |
1542 | 290 ± 15 | 41 ± 3 | 39 ± 2 |
1907 | 210 ± 55 | 32 ± 4 | 25 ± 3 |
(nm) | (pm/V) | (pm/V) | (pm/V) | (pm/V) | (pm/V) | (pm/V) |
---|---|---|---|---|---|---|
720 | 92 ± 9 | 60 ± 6 | 16 ± 2 | 0.8 ± 0.2 | 0.7 ± 0.2 | <0.1 |
800 | 77 ± 8 | 42 ± 4 | 15 ± 2 | <0.1 | <0.1 | <0.1 |
1313 | 53 ± 6 | 25 ± 3 | 6.2 ± 0.6 | <0.1 | <0.1 | <0.1 |
1535 | 47 ± 8 | 21 ± 4 | 5 ± 1 | <0.1 | <0.1 | <0.1 |
DAST a-Axis | |
---|---|
Oscillator Frequency (THz) | Line Width (THz) |
1.1 | 0.39 |
3.1 | 4.2 |
5.2 | 1.9 |
7.1 | 11 |
8.4 | 0.85 |
11 | 1.3 |
12.3 | 2.1 |
DAST b-Axis | |
Oscillator Frequency (THz) | Line Width (THz) |
1.1 | 0.31 |
1.3 | 0.84 |
1.6 | 0.2 |
2.2 | 1.3 |
3 | 1.6 |
5.2 | 1.1 |
7.2 | 3.4 |
9.6 | 1.7 |
11.7 | 5.2 |
(nm) | (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|
1535 | 2.13 | 2.26 | ∼2.4 | 47 | 242 | 5370 |
5.2. DSTMS
5.3. OH1
5.4. HMQ-TMS
5.5. BNA (MNA-3)
(nm) | (pm/V) | (pm/V) | (pm/V) | / (pm/V) | / (pm/V) |
---|---|---|---|---|---|
1064 | 234 ± 31 [97] 231 ± 5 [222] | negligible [97] | 15.6 ± 0.9 [97] 78.1 ± 1.6 [222] | 41.4 ± 0.8 [222] | 77.6 ± 1.6 [222] |
1349 | 4.5 ± 0.2 [221] |
(nm) | (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|
1064 | 1.80 | 1.88 | ∼ 2 | 45 | 118 | 2150 |
5.6. DCMBI
5.7. GUHP
6. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Jansen, C.; Wietzke, S.; Peters, O.; Scheller, M.; Vieweg, N.; Salhi, M.; Krumbholz, N.; Jördens, C.; Hochrein, T.; Koch, M. Terahertz imaging: Applications and perspectives. Appl. Opt. 2010, 49, E48–E57. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, K. THz Technology Applied to Cultural Heritage in Practice; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Smolyanskaya, O.; Chernomyrdin, N.; Konovko, A.; Zaytsev, K.; Ozheredov, I.; Cherkasova, O.; Nazarov, M.; Guillet, J.P.; Kozlov, S.; Kistenev, Y.V.; et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quant. Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Nanni, E.A.; Huang, W.R.; Hong, K.H.; Ravi, K.; Fallahi, A.; Moriena, G.; Dwayne Miller, R.; Kärtner, F.X. Terahertz-driven linear electron acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar] [CrossRef] [PubMed]
- Udina, M.; Cea, T.; Benfatto, L. Theory of coherent-oscillations generation in terahertz pump-probe spectroscopy: From phonons to electronic collective modes. Phys. Rev. B 2019, 100, 165131. [Google Scholar] [CrossRef]
- Bass, M.; Franken, P.; Ward, J.; Weinreich, G. Optical rectification. Phys. Rev. Lett. 1962, 9, 446. [Google Scholar] [CrossRef]
- Franken, P.; Hill, A.E.; Peters, C.E.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118. [Google Scholar] [CrossRef]
- Zernike Jr, F.; Berman, P.R. Generation of far infrared as a difference frequency. Phys. Rev. Lett. 1965, 15, 999. [Google Scholar] [CrossRef]
- Yajima, T.; Inoue, K. Submillimeter-wave generation by optical difference-frequency mixing of ruby R1 and R2 laser lines. Phys. Lett. A 1968, 26, 281–282. [Google Scholar] [CrossRef]
- Faries, D.; Gehring, K.; Richards, P.; Shen, Y. Tunable far-infrared radiation generated from the difference frequency between two ruby lasers. Phys. Rev. 1969, 180, 363. [Google Scholar] [CrossRef]
- Morris, J.; Shen, Y. Far-infrared generation by picosecond pulses in electro-optical materials. Opt. Commun. 1971, 3, 81–84. [Google Scholar] [CrossRef]
- Yang, K.; Richards, P.; Shen, Y. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett. 1971, 19, 320–323. [Google Scholar] [CrossRef]
- Yajima, T.; Takeuchi, N. Far-infrared difference-frequency generation by picosecond laser pulses. Jpn. J. Appl. Phys. 1970, 9, 1361. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.; Valdmanis, J.; Kleinman, D. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 1984, 53, 1555. [Google Scholar] [CrossRef]
- Schneider, A.; Neis, M.; Stillhart, M.; Ruiz, B.; Khan, R.U.; Günter, P. Generation of terahertz pulses through optical rectification in organic DAST crystals: Theory and experiment. J. Opt. Soc. Am. B Opt. Phys. 2006, 23, 1822–1835. [Google Scholar] [CrossRef]
- Zinov’ev, N.; Nikoghosyan, A.; Dudley, R.; Chamberlain, J. Conversion of short optical pulses to terahertz radiation in a nonlinear medium: Experiment and theory. Phys. Rev. B 2007, 76, 235114. [Google Scholar] [CrossRef]
- Zinov’ev, N.; Nikoghosyan, A.; Chamberlain, J. Terahertz radiation from a nonlinear slab traversed by an optical pulse. Phys. Rev. Lett. 2007, 98, 044801. [Google Scholar] [CrossRef]
- Schneider, A. Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size. Phys. Rev. A 2010, 82, 033825. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 1996, 68, 1604–1606. [Google Scholar] [CrossRef]
- Grischkowsky, D.; Keiding, S.; Van Exter, M.; Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B Opt. Phys. 1990, 7, 2006–2015. [Google Scholar] [CrossRef]
- Huber, R.; Brodschelm, A.; Tauser, F.; Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 2000, 76, 3191–3193. [Google Scholar] [CrossRef]
- Carrig, T.J.; Rodriguez, G.; Clement, T.S.; Taylor, A.; Stewart, K.R. Scaling of terahertz radiation via optical rectification in electro-optic crystals. Appl. Phys. Lett. 1995, 66, 121–123. [Google Scholar] [CrossRef]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic crystals for THz photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef]
- Vidal, S.; Degert, J.; Tondusson, M.; Oberlé, J.; Freysz, E. Impact of dispersion, free carriers, and two-photon absorption on the generation of intense terahertz pulses in ZnTe crystals. Appl. Phys. Lett. 2011, 98, 191103. [Google Scholar] [CrossRef]
- Jewariya, M.; Nagai, M.; Tanaka, K. Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3. J. Opt. Soc. Am. B Opt. Phys. 2009, 26, A101–A106. [Google Scholar] [CrossRef]
- Ravi, K.; Huang, W.R.; Carbajo, S.; Wu, X.; Kärtner, F. Limitations to THz generation by optical rectification using tilted pulse fronts. Opt. Express 2014, 22, 20239–20251. [Google Scholar] [CrossRef]
- Pálfalvi, L.; Hebling, J.; Almási, G.; Péter, Á.; Polgár, K.; Lengyel, K.; Szipöcs, R. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. J. Appl. Phys. 2004, 95, 902–908. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, C.; Xing, Q.; Gu, J.; Li, Y.; He, M.; Chai, L.; Wang, Q.; Zhang, W. Quantitative analysis of Kerr nonlinearity and Kerr-like nonlinearity induced via terahertz generation in ZnTe. Appl. Phys. Lett. 2008, 92, 041106. [Google Scholar] [CrossRef]
- Zhang, X.C.; Ma, X.; Jin, Y.; Lu, T.M.; Boden, E.; Phelps, P.; Stewart, K.; Yakymyshyn, C. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 1992, 61, 3080–3082. [Google Scholar] [CrossRef]
- Han, P.; Tani, M.; Pan, F.; Zhang, X.C. Use of the organic crystal DAST for terahertz beam applications. Opt. Lett. 2000, 25, 675–677. [Google Scholar] [CrossRef]
- Walther, M.; Jensby, K.; Keiding, S.R.; Takahashi, H.; Ito, H. Far-infrared properties of DAST. Opt. Lett. 2000, 25, 911–913. [Google Scholar] [CrossRef]
- Hauri, C.P.; Ruchert, C.; Vicario, C.; Ardana, F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett. 2011, 99, 161116. [Google Scholar] [CrossRef]
- Stillhart, M.; Schneider, A.; Günter, P. Optical properties of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies. J. Opt. Soc. Am. B Opt. Phys. 2008, 25, 1914–1919. [Google Scholar] [CrossRef]
- Somma, C.; Folpini, G.; Gupta, J.; Reimann, K.; Woerner, M.; Elsaesser, T. Ultra-broadband terahertz pulses generated in the organic crystal DSTMS. Opt. Lett. 2015, 40, 3404–3407. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.; Monoszlai, B.; Hauri, C.P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 2014, 112, 213901. [Google Scholar] [CrossRef]
- Brunner, F.D.; Kwon, O.P.; Kwon, S.J.; Jazbinšek, M.; Schneider, A.; Günter, P. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. Opt. Express 2008, 16, 16496–16508. [Google Scholar] [CrossRef]
- Miyamoto, K.; Ohno, S.; Fujiwara, M.; Minamide, H.; Hashimoto, H.; Ito, H. Optimized terahertz-wave generation using BNA-DFG. Opt. Express 2009, 17, 14832–14838. [Google Scholar] [CrossRef]
- Shalaby, M.; Vicario, C.; Thirupugalmani, K.; Brahadeeswaran, S.; Hauri, C.P. Intense THz source based on BNA organic crystal pumped at Ti: Sapphire wavelength. Opt. Lett. 2016, 41, 1777–1780. [Google Scholar] [CrossRef]
- Sanjuan, F.; Gaborit, G.; Coutaz, J.L. Terahertz generation by optical rectification in sugar crystal. J. Infrared Millimeter Terahertz Waves 2021, 42, 525–536. [Google Scholar] [CrossRef]
- Tangen, I.C.; Valdivia-Berroeta, G.A.; Heki, L.K.; Zaccardi, Z.B.; Jackson, E.W.; Bahr, C.B.; Ho, S.-H.; Michaelis, D.J.; Johnson, J.A. Comprehensive characterization of terahertz generation with the organic crystal BNA. J. Opt. Soc. Am. B Opt. Phys. 2021, 38, 2780–2785. [Google Scholar] [CrossRef]
- Valdivia-Berroeta, G.A.; Kenney, K.C.; Jackson, E.W.; Zaccardi, Z.; Tangen, I.C.; Bahr, C.B.; Ho, S.H.; Rader, C.; Smith, S.J.; Michaelis, D.J.; et al. Terahertz generation of two methoxy stilbazolium crystals: MBST and MBSC. Opt. Mater. 2021, 117, 111119. [Google Scholar] [CrossRef]
- Valdivia-Berroeta, G.A.; Tangen, I.C.; Bahr, C.B.; Kenney, K.C.; Jackson, E.W.; DeLagange, J.; Michaelis, D.J.; Johnson, J.A. Crystal Growth, Tetrahertz Generation, and Optical Characterization of EHPSI-4NBS. J. Phys. Chem. C 2021, 125, 16097–16102. [Google Scholar] [CrossRef]
- Brunner, F.D.; Schneider, A.; Günter, P. Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti: Sapphire laser. Appl. Phys. Lett. 2009, 94, 061119. [Google Scholar] [CrossRef]
- Lee, S.C.; Kang, B.J.; Koo, M.J.; Lee, S.H.; Han, J.H.; Choi, J.Y.; Kim, W.T.; Jazbinsek, M.; Yun, H.; Kim, D.; et al. New electro-optic salt crystals for efficient terahertz wave generation by direct pumping at Ti: Sapphire wavelength. Adv. Opt. Mater. 2017, 5, 1600758. [Google Scholar] [CrossRef]
- Jeong, C.U.; Kang, B.J.; Lee, S.H.; Lee, S.C.; Kim, W.T.; Jazbinsek, M.; Yoon, W.; Yun, H.; Kim, D.; Rotermund, F.; et al. Yellow-Colored Electro-Optic Crystals as Intense Terahertz Wave Sources. Adv. Funct. Mater. 2018, 28, 1801143. [Google Scholar] [CrossRef]
- Kim, D.; Kim, W.T.; Han, J.H.; Lee, J.A.; Lee, S.H.; Kang, B.J.; Jazbinsek, M.; Yoon, W.; Yun, H.; Kim, D.; et al. Wide-bandgap organic crystals: Enhanced optical-to-terahertz nonlinear frequency conversion at near-infrared pumping. Adv. Opt. Mater. 2020, 8, 1902099. [Google Scholar] [CrossRef]
- Shalaby, M.; Hauri, C.P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 2015, 6, 5976. [Google Scholar] [CrossRef]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.; Chefonov, O.; Ashitkov, S.; Agranat, M.; Hauri, C. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr: Forsterite laser. Opt. Express 2015, 23, 4573–4580. [Google Scholar] [CrossRef]
- Vicario, C.; Ovchinnikov, A.; Ashitkov, S.; Agranat, M.; Fortov, V.; Hauri, C. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser. Opt. Lett. 2014, 39, 6632–6635. [Google Scholar] [CrossRef]
- Agranat, M.; Chefonov, O.; Ovchinnikov, A.; Ashitkov, S.; Fortov, V.; Kondratenko, P. Damage in a thin metal film by high-power terahertz radiation. Phys. Rev. Lett. 2018, 120, 085704. [Google Scholar] [CrossRef]
- Sutherland, R.L. Handbook of Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bridges, T.; Strnad, A. Submillimeter Wave Generation by Difference-Frequency Mixing in GaAs. Appl. Phys. Lett. 1972, 20, 382–384. [Google Scholar] [CrossRef]
- Zernike, F. Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb. Phys. Rev. Lett. 1969, 22, 931. [Google Scholar] [CrossRef]
- Aggarwal, R.; Lax, B.; Favrot, G. Noncollinear phase matching in GaAs. Appl. Phys. Lett. 1973, 22, 329–330. [Google Scholar] [CrossRef]
- Lax, B.; Aggarwal, R.; Favrot, G. Far-infrared step-tunable coherent radiation source: 70 µm to 2 mm. Appl. Phys. Lett. 1973, 23, 679–681. [Google Scholar] [CrossRef]
- Mei, J.; Zhong, K.; Wang, M.; Liu, Y.; Xu, D.; Shi, W.; Wang, Y.; Yao, J.; Norwood, R.A.; Peyghambarian, N. Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 µm. Opt. Express 2016, 24, 23368–23375. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Nakajima, M.; Tang, C.; Watanabe, K.; Tanabe, T.; Oyama, Y. Phase-matching condition for THz wave generation via difference frequency generation using InxGa 1-xSe mixed crystals. Opt. Express 2020, 28, 20888–20897. [Google Scholar] [CrossRef]
- Sato, Y.; Tang, C.; Watanabe, K.; Ohsaki, J.; Yamamoto, T.; Tezuka, N.; Tanabe, T.; Oyama, Y. Terahertz wave generation via difference frequency generation using 2D InxGa 1-xSe crystal grown from indium flux. Opt. Express 2020, 28, 472–477. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J.; Fernelius, N.; Vodopyanov, K. Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 2002, 27, 1454–1456. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 µm for variety of potential applications. Appl. Phys. Lett. 2004, 84, 1635–1637. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J. Generation of backward terahertz waves in GaSe crystals. Opt. Lett. 2005, 30, 1861–1863. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Xu, D.; Liu, P.; Yan, C.; Shi, J.; Liu, H.; He, Y.; Tang, L.; Feng, J.; et al. High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 µm dual-wavelength intracavity KTP optical parametric oscillator. Photonics Res. 2017, 5, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ding, Y.J. Efficient terahertz generation from two collinearly propagating CO2 laser pulses. Appl. Phys. Lett. 2007, 91, 091108. [Google Scholar] [CrossRef]
- Creeden, D.; McCarthy, J.C.; Ketteridge, P.A.; Southward, T.; Schunemann, P.G.; Komiak, J.J.; Dove, W.; Chicklis, E.P. Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP. IEEE J. Sel. Top. Quant. Electron. 2007, 13, 732–737. [Google Scholar] [CrossRef]
- Gribenyukov, A.; Demin, V.; Polovtsev, I.; Yudin, N. Principles of creation of a tunable terahertz laser with lasing at a difference frequency in a nonlinear ZnGeP2 optical crystal. J. Opt. Technol. 2018, 85, 322–325. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X.; Yan, C.; Xu, D.; Li, Y.; Shi, W.; Zhang, G.; Zhang, X.; Yao, J.; Wu, Y. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile. Appl. Phys. Lett. 2016, 108, 011104. [Google Scholar]
- Dolasinski, B.; Powers, P.E.; Haus, J.W.; Cooney, A. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG. Opt. Express 2015, 23, 3669–3680. [Google Scholar] [CrossRef]
- Koichi, M.; Miyamoto, K.; Ujita, S.; Saito, T.; Ito, H.; Omatsu, T. Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser. Opt. Express 2011, 19, 18523–18528. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Xu, D.; Nie, M.; Yan, C.; Tang, L.; Shi, J.; Feng, J.; Yan, D.; Liu, H.; et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation. Appl. Phys. B 2018, 124, 16. [Google Scholar] [CrossRef]
- Notake, T.; Nawata, K.; Kawamata, H.; Matsukawa, T.; Qi, F.; Minamide, H. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator. Opt. Express 2012, 20, 25850–25857. [Google Scholar] [CrossRef]
- Liu, P.; Xu, D.; Li, Y.; Zhang, X.; Wang, Y.; Yao, J.; Wu, Y. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS. Europhys. Lett. 2014, 106, 60001. [Google Scholar] [CrossRef]
- Brenier, A. Two-frequency pulsed YLiF4: Nd lasing out of the principal axes and THz generation. Opt. Lett. 2015, 40, 4496–4499. [Google Scholar] [CrossRef]
- Majkić, A.; Zgonik, M.; Petelin, A.; Jazbinšek, M.; Ruiz, B.; Medrano, C.; Günter, P. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1. Appl. Phys. Lett. 2014, 105, 141115. [Google Scholar] [CrossRef]
- Armstrong, J.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918. [Google Scholar] [CrossRef]
- Tomita, I.; Suzuki, H.; Ito, H.; Takenouchi, H.; Ajito, K.; Rungsawang, R.; Ueno, Y. Terahertz-wave generation from quasi-phase-matched GaP for 1.55 μm pumping. Appl. Phys. Lett. 2006, 88, 071118. [Google Scholar] [CrossRef]
- Schaar, J.E.; Vodopyanov, K.L.; Kuo, P.S.; Fejer, M.M.; Yu, X.; Lin, A.; Harris, J.S.; Bliss, D.; Lynch, C.; Kozlov, V.G.; et al. Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide. IEEE J. Sel. Top. Quant. Electron. 2008, 14, 354–362. [Google Scholar] [CrossRef]
- Vodopyanov, K.; Fejer, M.; Yu, X.; Harris, J.; Lee, Y.S.; Hurlbut, W.C.; Kozlov, V.; Bliss, D.; Lynch, C. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 2006, 89, 141119. [Google Scholar] [CrossRef]
- Denisyuk, I.; Ozheredov, I.; Fokina, M.; Ignateva, I.; Sinko, A. Terahertz proprieties of polymers for 2D nonlinear grating formation. J. Infrared Millimeter Terahertz Waves 2022, accepted. [Google Scholar]
- Hebling, J.; Stepanov, A.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Johnston, W.D.J.; Kaminow, I.P. Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies. Phys. Rev. 1969, 188, 1209. [Google Scholar] [CrossRef]
- Hebling, J.; Yeh, K.L.; Hoffmann, M.C.; Bartal, B.; Nelson, K.A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B Opt. Phys. 2008, 25, B6–B19. [Google Scholar] [CrossRef]
- Sato, K.; Adachi, S. Optical properties of ZnTe. J. Appl. Phys. 1993, 73, 926–931. [Google Scholar] [CrossRef]
- Schall, M.; Walther, M.; Jepsen, P.U. Fundamental and second-order phonon processes in CdTe and ZnTe. Phys. Rev. B 2001, 64, 094301. [Google Scholar] [CrossRef]
- Vodopyanov, K.; Kulevskii, L. New dispersion relationships for GaSe in the 0.65–18 µm spectral region. Opt. Commun. 1995, 118, 375–378. [Google Scholar] [CrossRef]
- Piccioli, N.; Le Toullec, R.; Mejatty, M.; Balkanski, M. Refractive index of GaSe between 0.45 µm and 330 µm. Appl. Opt. 1977, 16, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, V.; Subashiev, V. Linear electro-optical effect in GaSe. Sov. Phys. Solid State 1972, 14, 178–183. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Nelson, D.; Turner, E. Electro-optic and piezoelectric coefficients and refractive index of Gallium Phosphide. J. Appl. Phys. 1968, 39, 3337–3343. [Google Scholar] [CrossRef]
- Jundt, D.H.; Fejer, M.M.; Byer, R.L. Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration. IEEE J. Quant. Electron. 1990, 26, 135–138. [Google Scholar] [CrossRef]
- Schall, M.; Helm, H.; Keiding, S. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. Int. J. Infrared Millim. Waves 1999, 20, 595–604. [Google Scholar] [CrossRef]
- Bruner, A.; Eger, D.; Oron, M.B.; Blau, P.; Katz, M.; Ruschin, S. Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate. Opt. Lett. 2003, 28, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Knöpfle, G.; Bosshard, C.; Follonier, S.; Spreiter, R.; Wong, M.; Günter, P. Electro-optic properties of the organic salt 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate. Appl. Phys. Lett. 1996, 69, 13–15. [Google Scholar] [CrossRef]
- Cunningham, P.D.; Hayden, L.M. Optical properties of DAST in the THz range. Opt. Express 2010, 18, 23620–23625. [Google Scholar] [CrossRef] [PubMed]
- Mutter, L.; Brunner, F.D.; Yang, Z.; Jazbinšek, M.; Günter, P. Linear and nonlinear optical properties of the organic crystal DSTMS. J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 2556–2561. [Google Scholar] [CrossRef]
- Hunziker, C.; Kwon, S.J.; Figi, H.; Juvalta, F.; Kwon, O.P.; Jazbinsek, M.; Günter, P. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene} malononitrile: Linear and nonlinear optical properties. J. Opt. Soc. Am. B Opt. Phys. 2008, 25, 1678–1683. [Google Scholar] [CrossRef]
- Fujiwara, M.; Maruyama, M.; Sugisaki, M.; Takahashi, H.; Aoshima, S.I.; Cogdell, R.J.; Hashimoto, H. Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline. Jpn. J. Appl. Phys. 2007, 46, 1528. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Chen, A.; Kosilkin, I.; Bale, D.; Dalton, L.R. Organic electro-optic thin films by simultaneous vacuum deposition and laser-assisted poling. Opt. Lett. 2011, 36, 2853–2855. [Google Scholar] [CrossRef] [PubMed]
- Zyss, J.; Oudar, J. Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units. Phys. Rev. A 1982, 26, 2028. [Google Scholar] [CrossRef]
- Chemla, D.S.; Zyss, J. Nonlinear Optical Properties of Organic Molecules and Crystals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Günter, P. Nonlinear Optical Effects and Materials; Springer: Berlin/Heidelberg, Germany, 2012; Volume 72. [Google Scholar]
- Huang, K. On the interaction between the radiation field and ionic crystals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 208, 352–365. [Google Scholar]
- Kleinman, D. Nonlinear dielectric polarization in optical media. Phys. Rev. 1962, 126, 1977. [Google Scholar] [CrossRef]
- Miller, R.C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 1964, 5, 17–19. [Google Scholar] [CrossRef]
- Garrett, C.; Robinson, F. Miller’s phenomenological rule for computing nonlinear susceptibilities. IEEE J. Quant. Electron. 1966, 2, 328–329. [Google Scholar] [CrossRef]
- Bell, M. Frequency dependence of Miller’s Rule for nonlinear susceptibilities. Phys. Rev. B 1972, 6, 516. [Google Scholar] [CrossRef]
- Fong, C.; Shen, Y. Theoretical studies on the dispersion of the nonlinear optical susceptibilities in GaAs, InAs, and InSb. Phys. Rev. B 1975, 12, 2325. [Google Scholar] [CrossRef]
- Ettoumi, W.; Petit, Y.; Kasparian, J.; Wolf, J.P. Generalized miller formulæ. Opt. Express 2010, 18, 6613–6620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Jin, Y.; Yang, K.; Schowalter, L. Resonant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett. 1992, 69, 2303. [Google Scholar] [CrossRef]
- Zhang, X.C.; Jin, Y.; Ware, K.; Ma, X.; Rice, A.; Bliss, D.; Larkin, J.; Alexander, M. Difference-frequency generation and sum-frequency generation near the band gap of zincblende crystals. Appl. Phys. Lett. 1994, 64, 622–624. [Google Scholar] [CrossRef]
- Xie, X.; Xu, J.; Zhang, X.C. Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths. Opt. Lett. 2006, 31, 978–980. [Google Scholar] [CrossRef]
- Arlauskas, A.; Krotkus, A. THz excitation spectra of AIIIBV semiconductors. Semicond. Sci. Technol. 2012, 27, 115015. [Google Scholar] [CrossRef]
- Norkus, R.; Nevinskas, I.; Krotkus, A. Terahertz emission from a bulk GaSe crystal excited by above bandgap photons. J. Appl. Phys. 2020, 128, 225701. [Google Scholar] [CrossRef]
- Zhai, D.; Hérault, E.; Garet, F.; Coutaz, J.L. Terahertz generation from ZnTe optically pumped above and below the bandgap. Opt. Express 2021, 29, 17491–17498. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Hérault, E.; Garet, F.; Pasiskevicius, V.; Laurell, F.; Coutaz, J.L. Two-photon-absorption enhanced terahertz generation from KTP optically pumped in the visible-to-UV range. Opt. Express 2021, 29, 37683–37694. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, H.; Vidal, J.; Cheng, T.; Ippen, E.; Dresselhaus, G.; Dresselhaus, M. Theory for displacive excitation of coherent phonons. Phys. Rev. B 1992, 45, 768. [Google Scholar] [CrossRef]
- Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 1997, 102, 207–220. [Google Scholar] [CrossRef]
- Cheng, T.; Vidal, J.; Zeiger, H.; Dresselhaus, G.; Dresselhaus, M.; Ippen, E. Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3. Appl. Phys. Lett. 1991, 59, 1923–1925. [Google Scholar] [CrossRef]
- Thouin, F.; Valverde-Chávez, D.A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A.R. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Tani, M.; Fukasawa, R.; Abe, H.; Matsuura, S.; Sakai, K.; Nakashima, S. Terahertz radiation from coherent phonons excited in semiconductors. J. Appl. Phys. 1998, 83, 2473–2477. [Google Scholar] [CrossRef]
- Gu, P.; Tani, M.; Sakai, K.; Yang, T.R. Detection of terahertz radiation from longitudinal optical phonon–plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna. Appl. Phys. Lett. 2000, 77, 1798–1800. [Google Scholar] [CrossRef]
- Hasselbeck, M.P.; Schlie, L.; Stalnaker, D. Emission of electromagnetic radiation by coherent vibrational wavesin stimulated Raman scattering. Appl. Phys. Lett. 2004, 85, 173–175. [Google Scholar] [CrossRef]
- Boyd, G.; Bridges, T.; Pollack, M.; Turner, E. Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals. Phys. Rev. Lett. 1971, 26, 387. [Google Scholar] [CrossRef]
- Faust, W.; Henry, C.H. Mixing of visible and near-resonance infrared light in GaP. Phys. Rev. Lett. 1966, 17, 1265. [Google Scholar] [CrossRef]
- Faust, W.; Henry, C.; Eick, R. Dispersion in the nonlinear susceptibility of GaP near the reststrahl band. Phys. Rev. 1968, 173, 781. [Google Scholar] [CrossRef]
- Casalbuoni, S.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Steffen, B.; Winter, A. Numerical studies on the electro-optic detection of femtosecond electron bunches. Phys. Rev. Accel. Beams 2008, 11, 072802. [Google Scholar] [CrossRef]
- Ding, Y.J. Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry. Opt. Lett. 2010, 35, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, M.; Taormina, A.; Busacca, A.C.; Oliveri, R.L.; Bivona, S.; Cino, A.C.; Stivala, S.; Sanseverino, S.R.; Leone, C. Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison. IEEE J. Quant. Electron. 2010, 46, 368–376. [Google Scholar]
- Carnio, B.; Elezzabi, A. An extensive finite-difference time-domain formalism for second-order nonlinearities based on the Faust-Henry dispersion model: Application to terahertz generation. J. Infrared Millimeter Terahertz Waves 2020, 41, 291–298. [Google Scholar] [CrossRef]
- Takeya, K.; Takemoto, Y.; Kawayama, I.; Murakami, H.; Matsukawa, T.; Yoshimura, M.; Mori, Y.; Tonouchi, M. Terahertz emission from coherent phonons in lithium ternary chalcopyrite crystals illuminated by 1560 nm femtosecond laser pulses. EPL Europhys. Lett. 2010, 91, 20004. [Google Scholar] [CrossRef]
- Tu, C.M.; Ku, S.A.; Chu, W.C.; Luo, C.W.; Chen, J.C.; Chi, C.C. Pulsed terahertz radiation due to coherent phonon-polariton excitation in < 110> ZnTe crystal. J. Appl. Phys. 2012, 112, 093110. [Google Scholar]
- Takeda, R.; Kida, N.; Sotome, M.; Matsui, Y.; Okamoto, H. Circularly polarized narrowband terahertz radiation from a eulytite oxide by a pair of femtosecond laser pulses. Phys. Rev. A 2014, 89, 033832. [Google Scholar] [CrossRef]
- Sotome, M.; Kida, N.; Takeda, R.; Okamoto, H. Terahertz radiation induced by coherent phonon generation via impulsive stimulated Raman scattering in paratellurite. Phys. Rev. A 2014, 90, 033842. [Google Scholar] [CrossRef]
- Valverde-Chávez, D.A.; Cooke, D.G. Multi-cycle terahertz emission from β-barium borate. J. Infrared Millimeter Terahertz Waves 2017, 38, 96–103. [Google Scholar]
- Jang, D.; Kim, K.Y. Multicycle terahertz pulse generation by optical rectification in LiNbO3, LiTaO3, and BBO crystals. Opt. Express 2020, 28, 21220–21235. [Google Scholar]
- Hayashi, S.; Nawata, K.; Kawase, K.; Minamide, H. High-Brightness and Continuously Tunable Terahertz-Wave Generation. In High Power Laser Systems; IntechOpen: London, UK, 2018. [Google Scholar]
- Henry, C.; Garrett, C. Theory of parametric gain near a lattice resonance. Phys. Rev. 1968, 171, 1058. [Google Scholar]
- Piestrup, M.; Fleming, R.; Pantell, R. Continuously tunable submillimeter wave source. Appl. Phys. Lett. 1975, 26, 418–421. [Google Scholar]
- Kawase, K.; Sato, M.; Taniuchi, T.; Ito, H. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 1996, 68, 2483–2485. [Google Scholar]
- Wang, W.; Cong, Z.; Chen, X.; Zhang, X.; Qin, Z.; Tang, G.; Li, N.; Wang, C.; Lu, Q. Terahertz parametric oscillator based on KTiOPO4 crystal. Opt. Lett. 2014, 39, 3706–3709. [Google Scholar]
- Ortega, T.A.; Pask, H.M.; Spence, D.J.; Lee, A.J. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output. Opt. Express 2016, 24, 10254–10264. [Google Scholar] [PubMed]
- Wang, W.; Cong, Z.; Liu, Z.; Zhang, X.; Qin, Z.; Tang, G.; Li, N.; Zhang, Y.; Lu, Q. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal. Opt. Express 2014, 22, 17092–17098. [Google Scholar]
- Carnio, B.; Hopmann, E.; Zawilski, K.; Schunemann, P.; Elezzabi, A. Dependence on excitation polarization and crystal orientation for terahertz radiation generation in a BaGa4Se7 crystal. Opt. Express 2020, 28, 15016–15022. [Google Scholar]
- Carnio, B.; Zawilski, K.; Schunemann, P.; Elezzabi, A. Generation of narrowband terahertz radiation via phonon mode enhanced nonlinearities in a BaGa4Se7 crystal. Opt. Lett. 2020, 45, 4722–4725. [Google Scholar]
- Sinko, A.; Solyankin, P.; Kargovsky, A.; Manomenova, V.; Rudneva, E.; Kozlova, N.; Sorokina, N.; Minakov, F.; Kuznetsov, S.; Nikolaev, N.; et al. A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics. Sci. Rep. 2021, 11, 23433. [Google Scholar]
- Vainshtein, B.K.; Fridkin, V.M.; Indenbom, V.L. Modern Crystallography II: Structure of Crystals; Springer: Berlin/Heidelberg, Germany, 1982; Volume 21. [Google Scholar]
- Kuz’mina, L.; Vedernikov, A.; Gromov, S.; Alfimov, M. Crystallographic Approach to the [2 + 2] Photocycloaddition Topochemical Reactions of Unsaturated Compounds with Single Crystal Retention. Crystallogr. Rep. 2019, 64, 691–712. [Google Scholar]
- Atwood, J.L.; Steed, J.W. Supramolecular Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bernstein, J. Polymorphism in Molecular Crystals; Clarendon Press: Oxford, UK, 2007. [Google Scholar]
- Ruiz, B.; Jazbinsek, M.; Günter, P. Crystal growth of DAST. Cryst. Growth Des. 2008, 8, 4173–4184. [Google Scholar]
- Li, Y.; Zhang, J.; Zhang, G.; Wu, L.; Fu, P.; Wu, Y. Growth and characterization of DSTMS crystals. J. Cryst. Growth 2011, 327, 127–132. [Google Scholar]
- Kwon, S.J.; Jazbinsek, M.; Kwon, O.P.; Günter, P. Crystal growth and morphology control of OH1 organic electrooptic crystals. Cryst. Growth Des. 2010, 10, 1552–1558. [Google Scholar]
- Kalaivanan, R.; Srinivasan, K. Synthesis, growth and characterization of organic nonlinear optical material: N-benzyl-2-methyl-4-nitroaniline (BNA). Opt. Laser Technol. 2017, 90, 27–32. [Google Scholar]
- Kaminskii, A.; Becker, P.; Rhee, H.; Lux, O.; Kaltenbach, A.; Eichler, H.; Shirakawa, A.; Yoneda, H.; Němec, I.; Fridrichová, M.; et al. Stimulated Raman scattering in monoclinic non-centrosymmetric guanylurea (1+) hydrogen phosphite (GUHP). Phys. Status Solidi 2013, 250, 1837–1856. [Google Scholar]
- Marder, S.R.; Perry, J.W.; Schaefer, W.P. Synthesis of organic salts with large second-order optical nonlinearities. Science 1989, 245, 626–628. [Google Scholar]
- Vijay, R.J.; Melikechi, N.; Thomas, T.; Gunaseelan, R.; Arockiaraj, M.A.; Sagayaraj, P. Investigation on the growth of DAST crystals of large surface area for THz applications. Mater. Chem. Phys. 2012, 132, 610–617. [Google Scholar]
- Bing, T.; Shu-hua, W.; Ke, F.; Li-feng, C.; De-gao, Z.; Fei, Y.; Xue-jun, J.; Lun, H.; Qing, S. Crystal growth, quality characterization and THz properties of DAST crystals. Cryst. Res. Technol. 2014, 49, 943–947. [Google Scholar]
- Matsukawa, T.; Hoshina, H.; Hoshikawa, A.; Otani, C.; Ishigaki, T. Temperature dependence of crystal structure and THz absorption spectra of organic nonlinear optical stilbazolium material for high-output THz-wave generation. J. Infrared Millimeter Terahertz Waves 2016, 37, 540–550. [Google Scholar]
- Sivakumar, T.; Anbarasan, R.; Kalyana Sundar, J.; Anna Lakshmi, M. Enhancing the SHG effect of zinc chloride-doped DAST single crystals: New potential materials for nonlinear optical device applications. J. Mater. Sci. Mater. Electron. 2020, 31, 12943–12954. [Google Scholar]
- Yang, Z.; Mutter, L.; Stillhart, M.; Ruiz, B.; Aravazhi, S.; Jazbinsek, M.; Schneider, A.; Gramlich, V.; Günter, P. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater. 2007, 17, 2018–2023. [Google Scholar]
- Kolev, T.; Glavcheva, Z.; Yancheva, D.; SchuÈrmann, M.; Kleb, D.C.; Preut, H.; Bleckmann, P. 2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclohex-2-en-1-ylidene} malononitrile. Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, o561–o562. [Google Scholar]
- Kwon, O.P.; Kwon, S.J.; Jazbinsek, M.; Brunner, F.D.; Seo, J.I.; Hunziker, C.; Schneider, A.; Yun, H.; Lee, Y.S.; Günter, P. Organic Phenolic Configurationally Locked Polyene Single Crystals for Electro-optic and Terahertz Wave Applications. Adv. Funct. Mater. 2008, 18, 3242–3250. [Google Scholar]
- Jeong, J.H.; Kang, B.J.; Kim, J.S.; Jazbinsek, M.; Lee, S.H.; Lee, S.C.; Baek, I.H.; Yun, H.; Kim, J.; Lee, Y.S.; et al. High-power broadband organic THz generator. Sci. Rep. 2013, 3, 3200. [Google Scholar]
- Fujiwara, M.; Yanagi, K.; Maruyama, M.; Sugisaki, M.; Kuroyanagi, K.; Takahashi, H.; Aoshima, S.i.; Tsuchiya, Y.; Gall, A.; Hashimoto, H. Second order nonlinear optical properties of the single crystal of N-Benzyl 2-methyl-4-nitroaniline: Anomalous enhancement of the d333 component and its possible origin. Jpn. J. Appl. Phys. 2006, 45, 8676. [Google Scholar]
- Piela, K.; Turowska-Tyrk, I.; Drozd, M.; Szostak, M.M. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and Raman spectroscopy. J. Mol. Struct. 2011, 991, 42–49. [Google Scholar]
- Notake, T.; Nawata, K.; Kawamata, H.; Matsukawa, T.; Minamide, H. Solution growth of high-quality organic N-benzyl-2-methyl-4-nitroaniline crystal for ultra-wideband tunable DFG-THz source. Opt. Mater. Express 2012, 2, 119–125. [Google Scholar]
- Horiuchi, S.; Kagawa, F.; Hatahara, K.; Kobayashi, K.; Kumai, R.; Murakami, Y.; Tokura, Y. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles. Nat. Commun. 2012, 3, 1308. [Google Scholar]
- Fridrichová, M.; Němec, I.; Císařová, I.; Němec, P. Guanylurea (1+) hydrogen phosphite: A novel promising phase-matchable material for second harmonic generation. CrystEngComm 2010, 12, 2054–2056. [Google Scholar]
- Kaminskii, A.; Manomenova, V.; Rudneva, E.; Sorokina, N.; Grebenev, V.; Kozlova, N.; Angeluts, A.; Ozheredov, I.; Solyankin, P.; Denisyuk, I.Y.; et al. The growth and properties of guanylurea hydrogen phosphite crystal. Crystallogr. Rep. 2019, 64, 669–677. [Google Scholar]
- Aroyo, M.I.; Perez-Mato, J.M.; Orobengoa, D.; Tasci, E.; de la Flor, G.; Kirov, A. Crystallography online: Bilbao crystallographic server. Bulg. Chem. Commun. 2011, 43, 183–197. [Google Scholar]
- Aroyo, M.I.; Perez-Mato, J.M.; Capillas, C.; Kroumova, E.; Ivantchev, S.; Madariaga, G.; Kirov, A.; Wondratschek, H. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Z. Krist.-Cryst. Mater. 2006, 221, 15–27. [Google Scholar] [CrossRef]
- Aroyo, M.I.; Kirov, A.; Capillas, C.; Perez-Mato, J.; Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. Sect. A Found. Crystallogr. 2006, 62, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Wong, M.S.; Bosshard, C.; Günter, P. Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4’-N-methyl-stilbazolium tosylate (dast). Adv. Mater. 1996, 8, 592–595. [Google Scholar] [CrossRef]
- Kosilkin, I.V.; Hillenbrand, E.A.; Tongwa, P.; Fonari, A.; Zazueta, J.; Fonari, M.S.; Antipin, M.; Dalton, L.R.; Timofeeva, T. Synthesis, structure, thermal and nonlinear optical properties of a series of novel D–π–A chromophores with varying alkoxy substituents. J. Mol. Struct. 2011, 1006, 356–365. [Google Scholar] [CrossRef]
- Menteşe, E.; Emirik, M.; Sökmen, B.B. Design, molecular docking and synthesis of novel 5, 6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem. 2019, 86, 151–158. [Google Scholar] [CrossRef]
- Manetta, S.; Ehrensperger, M.; Bosshard, C.; Günter, P. Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments. Comptes Rendus Phys. 2002, 3, 449–462. [Google Scholar] [CrossRef]
- Hameed, A.H.; Yu, W.; Chen, Z.; Tai, C.; Lan, C. An investigation on the growth and characterization of DAST crystals grown by two zone growth technique. J. Cryst. Growth 2005, 282, 117–124. [Google Scholar] [CrossRef]
- Brahadeeswaran, S.; Onduka, S.; Takagi, M.; Takahashi, Y.; Adachi, H.; Kamimura, T.; Yoshimura, M.; Mori, Y.; Yoshida, K.; Sasaki, T. Twin-free and high-quality DAST crystals- effected through solutions of lower supersaturation coupled with isothermal solvent evaporation. Cryst. Growth Des. 2006, 6, 2463–2468. [Google Scholar] [CrossRef]
- Gunaseelan, R.; Raj, A.A.; Selvakumar, S.; Sagayaraj, P. Growth and characterization of 4-N, N-dimethylamino-4′N′-methylstilbazolium p-toluenesulphonate (DAST) crystal—A potential THz emitter. Sci. Acta Xaver. 2012, 3, 27–44. [Google Scholar]
- Cao, L.; Teng, B.; Feng, K.; Zhong, D.; Hao, L.; Sun, Q. Growth and defects of DAST crystal in high concentration solution. J. Cryst. Growth 2015, 412, 20–24. [Google Scholar] [CrossRef]
- Cao, L.; Teng, B.; Zhong, D.; Hao, L.; Sun, Q. Growth and characterization of DAST crystal with large-thickness. J. Cryst. Growth 2016, 451, 188–193. [Google Scholar] [CrossRef]
- Sun, Q.; Teng, B.; Cao, L.; Ji, S.; Zhong, D.; Hao, L.; Xu, H.; Zhao, Y. SEM, Chemical Etching and THz Wave Generation of 4-Dimethylamino-N-methyl-4-stilbazolium Tosylate (DAST) Single Crystals. Crystallogr. Rep. 2017, 62, 1182–1186. [Google Scholar] [CrossRef]
- You, F.; Wang, T.; Wang, Q.; Cao, L.; Zhong, D.; Ji, S.; Hao, L.; Teng, B.; Tang, J. Stable growth of large-size organic 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate crystal and its optical, dielectric and THz properties. J. Mol. Struct. 2021, 1236, 130360. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Zhang, X.; Wang, L.; Zhang, J.; Wu, Y. Crystal growth and terahertz wave generation of organic NLO crystals: OH1. J. Cryst. Growth 2014, 402, 53–59. [Google Scholar] [CrossRef]
- Hashimoto, H.; Okada, Y.; Fujimura, H.; Morioka, M.; Sugihara, O.; Okamoto, N.; Matsushima, R.M.R. Second-harmonic generation from single crystals of N-substituted 4-nitroanilines. Jpn. J. Appl. Phys. 1997, 36, 6754. [Google Scholar] [CrossRef]
- Mori, Y.; Takahashi, Y.; Iwai, T.; Yoshimura, M.; Yap, Y.K.; Sasaki, T. Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate (DAST) crystals. Jpn. J. Appl. Phys. 2000, 39, L1006. [Google Scholar] [CrossRef]
- Jagannathan, K.; Kalainathan, S. Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method. Mater. Res. Bull. 2007, 42, 1881–1887. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, T.; Luo, J.; Hong, M. Nucleation kinetics and growth of high-quality DAST crystals with the aid of activated carbon as the adsorbent to micro-crystals in solutions. J. Cryst. Growth 2011, 328, 89–94. [Google Scholar] [CrossRef]
- Hameed, A.H.; Rohani, S.; Yu, W.; Tai, C.; Lan, C. Growth and characterization of a new chelating agent added 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) single crystals. Mater. Chem. Phys. 2007, 102, 60–66. [Google Scholar] [CrossRef]
- Hameed, A.H.; Yu, W.; Tai, C.; Lan, C. Effect of sodium toluene sulfonate on the nucleation, growth and characterization of DAST single crystals. J. Cryst. Growth 2006, 292, 510–514. [Google Scholar] [CrossRef]
- Matsukawa, T.; Yoshimura, M.; Takahashi, Y.; Takemoto, Y.; Takeya, K.; Kawayama, I.; Okada, S.; Tonouchi, M.; Kitaoka, Y.; Mori, Y.; et al. Bulk crystal growth of stilbazolium derivatives for terahertz waves generation. Jpn. J. Appl. Phys. 2010, 49, 075502. [Google Scholar] [CrossRef]
- Thomas, T.; Ramaclus, J.V.; Mena, F.P.; Mosquera, E.; Sagayaraj, P.; Michael, E.A. Influence of oleic acid on the nucleation and growth of 4-N, N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystals. CrystEngComm 2015, 17, 1989–1996. [Google Scholar] [CrossRef]
- Kwon, S.J.; Hunziker, C.; Kwon, O.P.; Jazbinsek, M.; Günter, P. Large-area organic electro-optic single crystalline thin films grown by evaporation-induced local supersaturation with surface interactions. Cryst. Growth Des. 2009, 9, 2512–2516. [Google Scholar] [CrossRef]
- Bharath, D.; Kalainathan, S. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal. Opt. Laser Technol. 2014, 63, 90–97. [Google Scholar]
- Lee, S.H.; Jazbinsek, M.; Hauri, C.P.; Kwon, O.P. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications. CrystEngComm 2016, 18, 7180–7203. [Google Scholar] [CrossRef]
- Karthick, S.; Santha, A.; Ganesh, D.; Thirupugalmani, K.; Ganesamoorthy, S.; Chaudhary, A.; Brahadeeswaran, S. Growth, spectral, laser damage and hirshfeld surface studies on configurationally locked 2-(3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene) malononitrile (OH1) single crystal-A potential terahertz emitter. J. Mol. Struct. 2021, 1224, 129065. [Google Scholar] [CrossRef]
- Choi, E.Y.; Jazbinsek, M.; Kwon, O.P. Control of Nucleation of Organic Electrooptic Phenolic Polyene Crystals by Highly Polar Liquid Additive. Cryst. Growth Des. 2012, 12, 495–498. [Google Scholar] [CrossRef]
- Choi, E.Y.; Seo, J.Y.; Jazbinsek, M.; Kwon, O.P. Thickness control of highly efficient organic electro-optic phenolic polyene crystals by metal acetates. Cryst. Growth Des. 2009, 9, 4269–4272. [Google Scholar]
- Kuroyanagi, K.; Fujiwara, M.; Hashimoto, H.; Takahashi, H.; Aoshima, S.i.; Tsuchiya, Y. Determination of refractive indices and absorption coefficients of highly purified n-benzyl-2-methyl-4-nitroaniline crystal in terahertz frequency regime. Jpn. J. Appl. Phys. 2006, 45, L761. [Google Scholar] [CrossRef]
- Jagannathan, K.; Kalainathan, S.; Gnanasekaran, T. Microhardness studies on 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST). Mater. Lett. 2007, 61, 4485–4488. [Google Scholar]
- Choudhury, R.; Chitra, R.; Makarova, I.; Manomenova, V.; Rudneva, E.; Voloshin, A.; Koldaeva, M. α-Nickel sulfate hexahydrate crystals: Relationship of growth conditions, crystal structure and properties. J. Appl. Crystallogr. 2019, 52, 1371–1377. [Google Scholar] [CrossRef]
- Koldaeva, M.; Turskaya, T.; Darinskaya, E. Magnetostimulated changes of microhardness in potassium acid phthalate crystals. Crystallogr. Rep. 2005, 50, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Darinskaya, E.V.; Koldaeva, M.V.; Alshits, V.I.; Pritula, I.; Voloshin, A. Relaxation kinetics of the microhardness of KDP crystals after their exposure to a magnetic field. JETP Lett. 2018, 108, 231–236. [Google Scholar] [CrossRef]
- Perry, J.W.; Marder, S.R.; Perry, K.J.; Sleva, E.T.; Yakymyshyn, C.P.; Stewart, K.R.; Boden, E.P. Organic salts with large electro-optic coefficients. In Proceedings of the Nonlinear Optical Properties of Organic Materials IV, San Diego, CA, USA, 21 July 1991; Volume 1560, pp. 302–309. [Google Scholar]
- Knöpfle, G.; Schlesser, R.; Ducrte, R.; Günter, P. Optical and nonlinear optical properties of 4’-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystals. Nonlinear Opt. 1995, 9, 143–149. [Google Scholar]
- Meier, U.; Bösch, M.; Bosshard, C.; Pan, F.; Günter, P. Parametric interactions in the organic salt 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths. J. Appl. Phys. 1998, 83, 3486–3489. [Google Scholar] [CrossRef]
- Arunkumar, K.; Kalainathan, S. Synthesis, growth and characterization of organic nonlinear optical single crystal 1, 3-bis (4-methoxyphenyl) prop-2-en-1-one (BMP) by vertical Bridgman technique. Opt. Laser Technol. 2017, 89, 143–150. [Google Scholar] [CrossRef]
- Manivannan, M.; Dhas, S.; Balakrishnan, M.; Jose, M. Study of optical and laser damage threshold in EDTA and DTPA-doped DAST single crystals. Appl. Phys. B 2018, 124, 166. [Google Scholar] [CrossRef]
- Takahashi, Y.; Onduka, S.; Brahadeeswaran, S.; Yoshimura, M.; Mori, Y.; Sasaki, T. Development of DAST crystals with high damage tolerance. Opt. Mater. 2007, 30, 116–118. [Google Scholar] [CrossRef]
- Monoszlai, B.; Vicario, C.; Jazbinsek, M.; Hauri, C. High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti: Sapphire wavelength. Opt. Lett. 2013, 38, 5106–5109. [Google Scholar] [CrossRef]
- Gollner, C.; Shalaby, M.; Brodeur, C.; Astrauskas, I.; Jutas, R.; Constable, E.; Bergen, L.; Baltuška, A.; Pugžlys, A. Highly efficient THz generation by optical rectification of mid-IR pulses in DAST. APL Photonics 2021, 6, 046105. [Google Scholar] [CrossRef]
- Takahashi, Y.; Adachi, H.; Taniuchi, T.; Takagi, M.; Hosokawa, Y.; Onzuka, S.; Brahadeeswaran, S.; Yoshimura, M.; Mori, Y.; Masuhara, H.; et al. Organic nonlinear optical DAST crystals for electro-optic measurement and terahertz wave generation. J. Photochem. Photobiol. A Chem. 2006, 183, 247–252. [Google Scholar]
- Bharath, D.; Kalainathan, S.; Anbuselvi, D. Studies on linear and nonlinear optical properties of 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate crystal. J. Mater. Sci. Mater. Electron. 2018, 29, 12813–12823. [Google Scholar]
- Montemezzani, G.; Alonzo, M.; Coda, V.; Jazbinsek, M.; Günter, P. Running electric field gratings for detection of coherent radiation. J. Opt. Soc. Am. B Opt. Phys. 2015, 32, 1078–1083. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Ruchert, C.; Levallois, J.; Erny, C.; Hauri, C.P. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K. Opt. Mater. Express 2014, 4, 870–875. [Google Scholar]
- Brunner, F.D.; Lee, S.H.; Kwon, O.P.; Feurer, T. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS. Opt. Mater. Express 2014, 4, 1586–1592. [Google Scholar] [CrossRef]
- Kang, B.J.; Lee, S.H.; Kim, W.T.; Lee, S.C.; Lee, K.; Benacchio, G.; Montemezzani, G.; Jazbinsek, M.; Kwon, O.P.; Rotermund, F. New class of efficient terahertz generators: Effective terahertz spectral filling by complementary tandem configuration of nonlinear organic crystals. Adv. Funct. Mater. 2018, 28, 1707195. [Google Scholar] [CrossRef]
- Buchmann, T.O.; Kelleher, E.J.; Kaltenecker, K.J.; Zhou, B.; Lee, S.H.; Kwon, O.P.; Jazbinsek, M.; Rotermund, F.; Jepsen, P.U. MHz-repetition-rate, sub-mW, multi-octave THz wave generation in HMQ-TMS. Opt. Express 2020, 28, 9631–9641. [Google Scholar] [CrossRef]
- Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S.H.; Kwon, O.P.; Hauri, C. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap. Sci. Rep. 2015, 5, 14394. [Google Scholar]
- Rovere, A.; Jeong, Y.G.; Piccoli, R.; Lee, S.H.; Lee, S.C.; Kwon, O.P.; Jazbinsek, M.; Morandotti, R.; Razzari, L. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm. Opt. Express 2018, 26, 2509–2516. [Google Scholar]
- Bernerd, C.; Segonds, P.; Debray, J.; Notake, T.; Koyama, M.; Minamide, H.; Ito, H.; Boulanger, B. Quadratic nonlinear optical properties of the organic N-benzyl-2-methyl-4-nitroaniline (BNA) biaxial crystal. Opt. Lett. 2018, 43, 1818–1821. [Google Scholar]
- Notake, T.; Takeda, M.; Okada, S.; Hosobata, T.; Yamagata, Y.; Minamide, H. Characterization of all second-order nonlinear-optical coefficients of organic N-benzyl-2-methyl-4-nitroaniline crystal. Sci. Rep. 2019, 9, 14853. [Google Scholar] [CrossRef] [PubMed]
- Korn, D.; Jazbinsek, M.; Palmer, R.; Baier, M.; Alloatti, L.; Yu, H.; Bogaerts, W.; Lepage, G.; Verheyen, P.; Absil, P.; et al. Electro-optic organic crystal silicon high-speed modulator. IEEE Photonics J. 2014, 6, 2700109. [Google Scholar] [CrossRef]
- Roeder, F.; Shalaby, M.; Beleites, B.; Ronneberger, F.; Gopal, A. THz generation by optical rectification of intense near-infrared pulses in organic crystal BNA. Opt. Express 2020, 28, 36274–36285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tan, Y.; Wu, T.; Steinfeld, G.; Zhang, Y.; Zhang, C.; Zhang, L.; Shalaby, M. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Appl. Phys. Lett. 2019, 114, 241101. [Google Scholar] [CrossRef]
- Miyamoto, K.; Minamide, H.; Fujiwara, M.; Hashimoto, H.; Ito, H. Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal. Opt. Lett. 2008, 33, 252–254. [Google Scholar] [CrossRef]
- Sotome, M.; Kida, N.; Horiuchi, S.; Okamoto, H. Narrowband terahertz radiation by impulsive stimulated Raman scattering in an above-room-temperature organic ferroelectric benzimidazole. Phys. Rev. A 2018, 98, 013843. [Google Scholar] [CrossRef]
- Fridrichová, M.; Kroupa, J.; Němec, I.; Císařová, I.; Chvostová, D. Guanylurea (1+) hydrogen phosphite: Study of linear and nonlinear optical properties. Phase Transitions 2010, 83, 761–767. [Google Scholar] [CrossRef]
- Sinko, A.S.; Ozheredov, I.A.; Solyankin, P.M.; Manomenova, V.L.; Rudneva, E.B.; Kozlova, N.N.; Voloshin, A.E.; Shkurinov, A.P. Molecular crystal (GUHP) for narrow-band pulsed THz generation with NIR femtosecond laser. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Vidal, S.; Degert, J.; Tondusson, M.; Freysz, E.; Oberlé, J. Optimized terahertz generation via optical rectification in ZnTe crystals. J. Opt. Soc. Am. B Opt. Phys. 2014, 31, 149–153. [Google Scholar] [CrossRef]
- Nazarov, M.; Mukina, L.; Shuvaev, A.; Sapozhnikov, D.; Shkurinov, A.; Trofimov, V. Excitation and propagation of surface electromagnetic waves studied by terahertz spectrochronography. Laser Phys. Lett. 2005, 2, 471. [Google Scholar] [CrossRef]
Material | (nm) | r (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|---|
ZnTe | 800 | 2.87 [83] | 3.31 | ∼3.17 [84] | 4.04 [20] | 68.5 | 180 |
GaSe | 800 | 2.85 [85] | 3.13 | ∼3.27 [86] | 1.7 [87] | 28 | 25.9 |
GaP | 800 | 3.18 [88] | 3.57 | ∼3.34 [88] | 0.97 [89] | 24.8 | 18.2 |
LiNbO3 | 800 | 2.159 [90] | 2.23 | ∼5.16 [91] | 30.9 [20] | 168 | 1170 |
LiTaO3 | 800 | 2.145 [92] | 2.22 | ∼6.42 [91] | 30.5 [20] | 161 | 882 |
DAST | 1535 | 2.13 [93] | 2.26 | ∼2.4 [94] | 47 [93] | 242 | 5370 |
DSTMS | 1907 | 2.06 [95] | 2.12 | ∼2.2 [34] | 37 [95] | 167 | 2970 |
OH1 | 1319 | 2.15 [96] | 2.32 | ∼2.3 [74] | 52 [96] | 278 | 7260 |
BNA | 1064 | 1.80 [97] | 1.88 | ∼2 [41] | 45 [98] | 118 | 2150 |
Abbreviation Formula Name | Molecular | Habit |
---|---|---|
DAST C23H26N2SO3 4-N,N-dimethylamino- 4′-N′-methyl- stilbazolium tosylate | Reprinted with permission from [150] Copyright 2022 American Chemical Society | |
DSTMS C25H30N2O3S 4-N, N-dimethylamino- 4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonat | Reprinted from [151], with permission from Elsevier | |
OH1 C19H18N2O (2-(3-(4-hydroxystyryl)- 5,5-dimethylcyclohex- 2-enylidene)malononitrile) | Reprinted with permission from [152] Copyright 2022 American Chemical Society | |
HMQ-TMS C28H29N2O5S 2-(4-hydroxy-3- methoxystyryl)-1- methylquinolinium 2,4,6-trimethylbenzenesulfonate | ||
BNA C14H14N2O2 N-benzyl-2-methyl-4- nitroaniline (N-benzyl- MNA) | orthorhombic configuration Reprinted from [153], with permission from Elsevier | |
DCMBI C8H6Cl2N2 5,6-dichloro-2- methylbenzimidazole | ||
GUHP C2H9N4O guanylurea(1+) hydrogenphosphite | Reprinted with permission from [154] ©John Wiley and Sons |
Crystal | Symmetry | a,b,c, Å | , ° | V, Å3 | , g/cm3 | Ref. |
---|---|---|---|---|---|---|
DAST | monoclinic No.9 space gr. point gr. m | 10.365(3) 11.322(4) 17.893(4) | 92.24(2) | 2098.2(11) | 1.3 | [155] CCDC-1175744 |
10.355(8) 11.3181(8) 17.8693(13) | 92.2178(10) | 2092.69(160) | [157] CCDC-1942821 | |||
DSTMS | monoclinic No.9 space gr. point gr. m | 10.2665(9) 12.2788(10) 17.9626(15) | 93.039(7) | 2261.19(30) | 1.28821 | [160] CCDC-277597 |
OH1 | orthorhombic No.33 space gr. point gr. | 15.4413(3) 10.9988(3) 9.5699(2) | 90 | 1625.31(6) | [161] CCDC-170318 | |
15.4408(6) 10.9939(3) 9.5709(3) | 90 | 1624.70(9) | [162] CCDC-672263 | |||
HMQ-TMS | monoclinic No.7 space gr. point gr. m | 11.1192(3) 7.9773(2) 14.4921(4) | 106.07(6) | 1234.07(6) | 1.32284 | [163] CCDC-931931 |
BNA | orthorhombic No.33 space gr. point gr. | 7.32723(13) 21.386(3) 8.0845(13) | 90 | 1274.63(40) | 1.2624 | [165] CCDC-801718 |
monoclinic No.14 space gr. point gr. | 16.457(2) 7.1319(12) 20.992(3) | 90.404(14) | [165] CCDC-801717 | |||
DCMBI | orthorhombic No.29 space gr. point gr. | 14.238(3) 5.6866(12) 10.398(2) | 90 | 841.88(30) | 1.58628 | [167] CCDC-909439 |
GUHP | monoclinic No.9 space gr. point gr. m | 6.6982(1) 6.8343(1) 16.3436(2) | 96.5060(11) | 743.351(18) | 1.645 | [145] CCDC-2055448 |
6.6828(1) 6.7535(1) 16.2433(1) | 96.5183(8) | 728.358(12) | 1.679 | [145] () CCDC-2055458 |
Dye | Hetaryl Part | Aryl Part |
---|---|---|
DAST | ||
DSTMS | ||
OH1 | ||
HMQ-TMS |
Solvent, Additives | Growing Method * | DAST Concentration, g/100 g of Solvent Part | Crystal Size, mm | Solubility | Ref. |
---|---|---|---|---|---|
DAST | |||||
Methanol (MeOH) | SC, seed | 4–5.5 | 25–55 °C | [173] | |
MeOH | Thin film | ∼10–55 °C | [176] | ||
MeOH | TZGT, seed | 33–50 °C | [177] | ||
MeOH | SNM + SE | 3–7 × 3–7 × 0.2–0.8 | 20–50 °C | [178] | |
MeOH | CSN | 4.27, 6.94 | 20–65 °C | [150] | |
MeOH | SNM + SC | 3.25 | 30–50 °C | [179] | |
MeOH | SNM + SC | 5.5 | [180] | ||
MeOH | SC in water bath, seeds (by SNM) | 3.0 | [181] | ||
MeOH | SNM + SC | 3.5 | and | [182] | |
MeOH | SC, seed | 3.0–5.0 | [183] | ||
DSTMS | |||||
MeOH | SC | 25–55 °C | [160] | ||
MeOH | SC | 25–55 °C | [151] | ||
OH1 | |||||
MeOH | SE | Side length of up to 1 cm; thickness of 0.1–2 mm | [162] | ||
MeOH | RC | [184] | |||
HMQ-TMS | |||||
MeOH or H2O:MeOH (1:9) | RC or SC | [163] | |||
BNA | |||||
MeOH | SE at room temperature | [185] | |||
Ethanol | SE, seed | [166] | |||
From melt | Vertical Bridgman | [164] | |||
GUHP | |||||
H2O | SC and SE | 30–50 °C | [169] |
q | 1.45 ± 0.05 | 0.36 ± 0.04 | 0.11 ± 0.07 |
2.026 ± 0.006 | 1.627 ± 0.004 | 1.579 ± 0.005 | |
(nm) | 532 ± 5 | 502 ± 11 | 360 ± 100 |
(nm) | (pm/V) | (pm/V) | (pm/V) |
---|---|---|---|
1907 | 214 ± 20 | 31 ± 4 | 35 ± 4 |
(nm) | (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|
1907 | 2.06 | 2.12 | ∼ 2.2 | 37 | 167 | 2970 |
q | 0.379 ± 0.06 | 1.865 ± 0.04 |
1.4417 ± 0.002 | 1.5744 ± 0.01 | |
(nm) | 471.4 ± 20 | 490.2 ± 2 |
(nm) | (pm/V) | (pm/V) | (pm/V) |
---|---|---|---|
1907 | 120 ± 10 | 13 ± 2 | 8.5 ± 2 |
(nm) | (pm/V) | (pm/V) | (pm/V) |
---|---|---|---|
632.8 | 90 ± 6 | 109 ± 4 | 13.8 ± 0.7 |
785 | 52 ± 3 | 75 ± 7 | 10.1 ± 0.6 |
1064 | 35 ± 2 | 56 ± 2 | 7.6 ± 0.3 |
1319 | 30 ± 2 | 52 ± 7 | 6.8 ± 0.3 |
OH1 c-Axis | |
---|---|
Oscillator Frequency (THz) | Line Width (THz) |
0.368 ± 0.007 [37] | 0.18 ± 0.15 [37] |
0.595 ± 0.004 [37] | 0.26 ± 0.06 [37] |
1.45 [215]/1.467 ± 0.006 [37] | 0.13 [215]/0.97 ± 0.11 [37] |
1.58 [215] | 0.14 [215] |
2.23 [215] | 0.21 [215] |
2.41 [215] | 0.04 [215] |
2.71 [215]/2.85 ± 0.03 [37] | 1.8 [215]/3.06 ± 0.02 [37] |
3 [74] | - |
4.5 [74] | - |
6 [74] | - |
8.2 [74] | - |
11 [74] | - |
OH1 b-Axis | |
Oscillator Frequency (THz) | Line Width (THz) |
0.820 ± 0.002 [37] | 0.34 ± 0.03 [37] |
1.772 ± 0.006 [37] | 1.84 ± 0.09 [37] |
2.64 ± 0.02 [37] | 1.8 ± 0.2 [37] |
(nm) | (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|
1319 | 2.15 | 2.32 | ∼ 2.3 | 52 | 278 | 7260 |
q | 1.10 ± 0.06 |
1.910 ± 0.009 | |
(nm) | 452 ± 4 |
(nm) | (pm/V) | (pm/V) | FOMTHz (pm/V)2 | |||
---|---|---|---|---|---|---|
633 | 2.19 | 3.26 | ∼2.2 | 50 | 287 | 7500 |
A | 2.40481 | 2.89766 | 3.10611 |
B | 0.02245 | 0.05587 | 0.12089 |
C | 0.18254 | 0.02245 | 0.185 |
Raman | Infrared | ||
---|---|---|---|
Oscillator Frequency (THz) | Line Width (THz) | Oscillator Frequency (THz) | Line Width (THz) |
0.99 | 0.0981 | 0.99 | 0.126 |
1.21 | 0.090 | ||
1.80 | 0.189 | 1.83 | 0.148 |
2.03 | 0.180 | 2.03 | 0.177 |
2.40 | 0.203 |
(nm) | |||
---|---|---|---|
533 | 1.755 | 1.695 | 1.513 |
1064 | 1.723 | 1.663 | 1.499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinko, A.; Ozheredov, I.; Rudneva, E.; Manomenova, V.; Kozlova, N.; Lobova, N.; Voloshin, A.; Coutaz, J.-L.; Shkurinov, A. Perspective on Terahertz Applications of Molecular Crystals. Electronics 2022, 11, 2731. https://doi.org/10.3390/electronics11172731
Sinko A, Ozheredov I, Rudneva E, Manomenova V, Kozlova N, Lobova N, Voloshin A, Coutaz J-L, Shkurinov A. Perspective on Terahertz Applications of Molecular Crystals. Electronics. 2022; 11(17):2731. https://doi.org/10.3390/electronics11172731
Chicago/Turabian StyleSinko, Anton, Ilya Ozheredov, Elena Rudneva, Vera Manomenova, Natalia Kozlova, Natalia Lobova, Alexey Voloshin, Jean-Louis Coutaz, and Alexander Shkurinov. 2022. "Perspective on Terahertz Applications of Molecular Crystals" Electronics 11, no. 17: 2731. https://doi.org/10.3390/electronics11172731
APA StyleSinko, A., Ozheredov, I., Rudneva, E., Manomenova, V., Kozlova, N., Lobova, N., Voloshin, A., Coutaz, J.-L., & Shkurinov, A. (2022). Perspective on Terahertz Applications of Molecular Crystals. Electronics, 11(17), 2731. https://doi.org/10.3390/electronics11172731