Music Recommendation Based on “User-Points-Music” Cascade Model and Time Attenuation Analysis
Abstract
:1. Introduction
- -
- We remodel the traditional “User-Music” recommendation framework into “User-Points of Interest-Music”. Compared with single music recommendation, music recommendation using interest points composed of multiple pieces of music can achieve a more stable recommendation effect.
- -
- We develop a music clustering model to extract the interest points for a music recommendation system, ignoring if the length of the music list consumed is short or not, with no need to set the number of clusters in advance. It still works well for the niche music.
- -
- We propose a music interest attenuation algorithm considering the uneven distribution of music recommendation systems. This slows down the decay rate of interest points the user prefers and speeds up the decay rate of interest points that users do not like very much in the same time window, mitigating the Matthew effect of the system.
2. Related Work
3. User-Points-Music Model
3.1. Music Recommendation Structure
3.2. Multi-Interest Modeling
3.2.1. “User-Music” Implicit Rating Matrix Construction
3.2.2. The Structure of Word2Vector
3.2.3. Clustering for User Multi-Interest
3.2.4. Mixed Similarity Evaluation Index
3.3. Time Decay Modeling
3.4. Music Recommendation Based on Muti-Interest Points
3.4.1. Merging of Interest Points
3.4.2. Music Recommendation
4. Experimental Framework and Setup
4.1. Metrics
4.2. Datasets
4.3. Settings
4.4. Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elbouchikhi, E.; Choqueuse, V.; Benbouzid, M. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation. Isa Trans. 2016, 63, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Eken, S. An exploratory teaching program in big data analysis for undergraduate students. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4285–4304. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Feng, G.; Wang, Q.; Hu, J.; Wang, C. Deriving time-series three-dimensional displacements of mining areas from a single-geometry InSAR dataset. J. Geod. 2018, 92, 529–544. [Google Scholar] [CrossRef]
- Galety, M.G.; Thiagarajan, R.; Sangeetha, R.; Vignesh, L.K.B.; Arun, S.; Krishnamoorthy, R. Personalized Music Recommendation model based on Machine Learning. In Proceedings of the 2022 8th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 21–22 April 2022; pp. 1–6. [Google Scholar]
- Afchar, D.; Melchiorre, A.B.; Schedl, M.; Hennequin, R.; Epure, E.V.; Moussallam, M. Explainability in Music Recommender Systems. arXiv 2022, arXiv:2201.10528. [Google Scholar] [CrossRef]
- Sarin, E.; Vashishtha, S.; Megha; Kaur, S. SentiSpotMusic: A music recommendation system based on sentiment analysis. In Proceedings of the 2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), 2022, Jamshedpur, India, 11–12 February 2022; pp. 373–378. [Google Scholar]
- Kodama, Y.; Gayama, S.; Suzuki, Y.; Odagawa, S.; Shioda, T.; Matsushita, F.; Tabata, T. A music recommendation system. In Proceedings of the 2005 Digest of Technical Papers. International Conference on Consumer Electronics, Las Vegas, NV, USA, 8–12 January 2005; pp. 219–220. [Google Scholar]
- Deldjoo, Y.; Schedl, M.; Knees, P. Content-driven Music Recommendation: Evolution, State of the Art, and Challenges. arXiv 2021, arXiv:2107.11803. [Google Scholar]
- Jun, S.; Kim, D.; Jeon, M.; Rho, S.; Hwang, E. Social mix: Automatic music recommendation and mixing scheme based on social network analysis. J. Supercomput. 2015, 71, 1933–1954. [Google Scholar] [CrossRef]
- Asharaf, S.; Murty, M.N. An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recognit. 2003, 36, 3015–3018. [Google Scholar] [CrossRef]
- Briot, J.P. Deep Learning Techniques for Music Generation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Aydin, L.; Karakose, M.; Akin, E. A new method for time series classification using multi-dimensional phase space and a statistical control chart. Neural Comput. Appl. 2020, 32, 7439–7453. [Google Scholar] [CrossRef]
- Kathari, S.; Tangirala, A.K. Scalar correlation functions for model structure selection in high-dimensional time-series modelling—ScienceDirect. Isa Trans. 2020, 100, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Carlos, C.H. A hybrid recommender system for finding relevant users in open source forums. In Proceedings of the 2010 Third International Workshop on Managing Requirements Knowledge, Sydney, NSW, Australia, 27 September 2010; pp. 41–50. [Google Scholar]
- Sun, Y.; Bozdogan, H. Segmentation of High Dimensional Time-Series Data Using Mixture of Sparse Principal Component Regression Model with Information Complexity. Entropy 2020, 22, 1170. [Google Scholar] [CrossRef] [PubMed]
- Andres, F.; Dmitry, B.; Jisang, Y.; KwangSeob, K.; Xavier, S. Automatic playlist continuation using a hybrid recommender system combining features from text and audio. In Proceedings of the ACM Recommender Systems Challenge 2018, Vancouver, BC, Canada, 2 October 2018. [Google Scholar]
- Cheng, M.; Jing, L.; Ng, M.K. Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering. IEEE Trans. Image Process. 2019, 28, 2399–2414. [Google Scholar] [CrossRef] [PubMed]
- Sunitha, M.; Adilakshmi, T.; Benbouzid, M. Music Recommendation System with User-based and Item-based Collaborative Filtering Technique. In Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2017; Volume 3. [Google Scholar]
- MacKintosh, S.B.; Serino, L.P.; Iddon, P.D.; Brown, R.; Conlan, R.S. A three-dimensional model of primary bovine endometrium using an electrospun scaffold. Biofabrication 2015, 7, 025010. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Wang, J.S.; Chiang, W.C.; Chien, H. Automatic ECG-Based Emotion Recognition in Music Listening. IEEE Trans. Affect. Comput. 2020, 11, 85–99. [Google Scholar] [CrossRef]
- Shao, B.; Wang, D.; Li, T.; Ogihara, M. Music Recommendation Based on Acoustic Features and User Access Patterns. IEEE Trans. Audio Speech Lang. Process. 2009, 17, 1602–1611. [Google Scholar] [CrossRef]
- Wang, K.; Sadredini, E.; Skadron, K. Hierarchical Pattern Mining with the Automata Processor. Int. J. Parallel Program. 2018, 46, 376–411. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, X.; Yang, S.; Han, Q.; Zhao, P. Latent Dirichlet Allocation Model Training with Differential Privacy. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1290–1305. [Google Scholar] [CrossRef]
- Kinoshita, S.; Ogawa, T.; Haseyama, M. LDA-based music recommendation with CF-based similar user selection. In Proceedings of the 4th Global Conference on Consumer Electronics (GCCE 2015), Osaka, Japan, 27–30 October 2015; pp. 215–216. [Google Scholar]
- Kinoshita, S.; Ogawa, T.; Haseyama, M. Popular music estimation based on topic model using time information and audio features. In Proceedings of the 3rd Global Conference on Consumer Electronics (GCCE 2014), Tokyo, Japan, 7–10 October 2014; pp. 102–103. [Google Scholar]
- Shi, J. Music Recommendation Algorithm Based on Multidimensional Time-Series Model Analysis. Complexity 2021, 2021, 5579086. [Google Scholar] [CrossRef]
- Schedl, M.; Knees, P.; McFee, B.; Bogdanov, D. Music Recommendation Systems: Techniques Use Cases, and Challenges. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: New York, NY, USA, 2022. [Google Scholar]
- Feng, L.; Tintarev, N. A Diversity Ajusting Strategy with Personality for Music Recommendation. In Proceedings of the 5th Joint Workshop on Interfaces and Human Decision Making for Recommender System, Vancouver, BC, Canada, 7 October 2018. [Google Scholar]
- Deng, S.; Wang, D.; Li, X.; Xu, G. Exploring user emotion in microblogs for music recommendation. Expert Syst. Appl. 2015, 42, 9284–9293. [Google Scholar] [CrossRef]
- Kse, B.; Eken, S.; Sayar, A. Playlist Generation via Vector Representation of Songs. In Proceedings of the INNS Conference on Big Data, Thessaloniki, Greece, 23–25 October 2016. [Google Scholar]
Size | F1-Value |
---|---|
10 | 0.338 |
20 | 0.342 |
30 | 0.351 |
40 | 0.359 |
50 | 0.365 |
60 | 0.373 |
70 | 0.381 |
80 | 0.395 |
90 | 0.422 |
100 | 0.431 |
110 | 0.439 |
120 | 0.440 |
130 | 0.442 |
140 | 0.443 |
150 | 0.444 |
K | Fasttext | Glove | W2V |
---|---|---|---|
1 | 0.079 | 0.087 | 0.095 |
2 | 0.106 | 0.128 | 0.157 |
3 | 0.187 | 0.255 | 0.286 |
4 | 0.265 | 0.294 | 0.318 |
5 | 0.313 | 0.353 | 0.372 |
6 | 0.368 | 0.388 | 0.394 |
7 | 0.392 | 0.416 | 0.421 |
8 | 0.411 | 0.425 | 0.426 |
9 | 0.419 | 0.428 | 0.432 |
10 | 0.426 | 0.431 | 0.439 |
Sim_Thread | F1-Value |
---|---|
0.80 | 0.439 |
0.81 | 0.467 |
0.82 | 0.513 |
0.83 | 0.513 |
0.84 | 0.547 |
0.85 | 0.586 |
0.86 | 0.599 |
0.87 | 0.593 |
0.88 | 0.587 |
0.89 | 0.575 |
0.90 | 0.568 |
λ | Time (Day) | Y_A | Y_B |
---|---|---|---|
0.001 | 138 | 0.841558289 | 0.501576069 |
0.001 | 554 | 0.500323695 | 0.062662005 |
0.002 | 69 | 0.841558289 | 0.501576069 |
0.002 | 277 | 0.500323695 | 0.062662005 |
0.003 | 46 | 0.841558289 | 0.501576069 |
0.003 | 184 | 0.501576069 | 0.063291768 |
0.004 | 34 | 0.843664817 | 0.506616992 |
0.004 | 138 | 0.501576069 | 0.063291768 |
0.005 | 27 | 0.844720057 | 0.509156421 |
0.005 | 110 | 0.502831578 | 0.006390000 |
K | Cos | Pearson | Fusion |
---|---|---|---|
1 | 0.113 | 0.116 | 0.164 |
2 | 0.183 | 0.171 | 0.220 |
3 | 0.317 | 0.227 | 0.378 |
4 | 0.439 | 0.314 | 0.498 |
5 | 0.526 | 0.427 | 0.602 |
6 | 0.587 | 0.492 | 0.638 |
7 | 0.624 | 0.517 | 0.689 |
8 | 0.638 | 0.539 | 0.720 |
9 | 0.694 | 0.532 | 0.763 |
10 | 0.719 | 0.528 | 0.781 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, J.; Zhou, J.; Li, M.; Guo, Y. Music Recommendation Based on “User-Points-Music” Cascade Model and Time Attenuation Analysis. Electronics 2022, 11, 3093. https://doi.org/10.3390/electronics11193093
Wang T, Li J, Zhou J, Li M, Guo Y. Music Recommendation Based on “User-Points-Music” Cascade Model and Time Attenuation Analysis. Electronics. 2022; 11(19):3093. https://doi.org/10.3390/electronics11193093
Chicago/Turabian StyleWang, Tuntun, Junke Li, Jincheng Zhou, Mingjiang Li, and Yong Guo. 2022. "Music Recommendation Based on “User-Points-Music” Cascade Model and Time Attenuation Analysis" Electronics 11, no. 19: 3093. https://doi.org/10.3390/electronics11193093
APA StyleWang, T., Li, J., Zhou, J., Li, M., & Guo, Y. (2022). Music Recommendation Based on “User-Points-Music” Cascade Model and Time Attenuation Analysis. Electronics, 11(19), 3093. https://doi.org/10.3390/electronics11193093