EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems
Abstract
:1. Introduction
- The proposed EE-MPTCP scheduler constructs a target optimization function whose value increases with the increase of network throughput and decrease with energy consumption.
- The markov chain based MPTCP transmission model, which constructs the change of congestion window under packet loss rate and congestion control strategy in each Round-Trip Time (RTT) cycle, is adopted to estimate the average throughput.
- A heuristic scheduling algorithm is proposed based on two-level sorting to find the optimal subflow set for each application. Experimental results based on Linux testbed and NS3 validate the performance of EE-MPTCP.
2. Related Works
2.1. MPTCP in IoT
2.2. MPTCP with Energy Efficiency
3. Problems and Challenges
3.1. Problems
3.2. Problems Validation with Linux-Based Testbed
4. Our Proposed EE-MPTCP
4.1. The Target Optimization Function
4.2. The Energy-Efficiency Model
4.3. Modelling of Data Transmission
4.4. The Proposed EE-MPTCP Algorithm
- (1)
- Subflows Sorting
- (2)
- Throughput Calculation
Algorithm 1: Estimate the average throughput based upon loss-throughput model |
- (3)
- The proposed EE-MPTCP algorithm
Algorithm 2: Estimate the optimal subfolw set |
5. Performance Evaluation
5.1. Experimental Settings
5.2. Experimental Results
5.3. Industrial Applications
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Liang, W.; Zhou, X.; Jiang, D.; Kui, X.; Li, K.-C. An efficient transmission algorithm for power grid data suitable for autonomous multi-robot systems. Inf. Sci. 2021, 572, 543–557. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Tan, Y.; Wu, D.; Cao, Y. An automatic analog instrument reading system using computer vision and inspection robot. IEEE Trans. Instrum. Meas. 2020, 69, 6322–6335. [Google Scholar] [CrossRef]
- Mbd, A.; Mkr, B.; Bbgc, D. An energy aware grouping memetic algorithm to schedule the sensing ac-tivity in WSNs-based IoT for smart cities. Appl. Soft Comput. 2021, 108, 107473. [Google Scholar]
- Yang, W.; Dong, P.; Cai, L.; Tang, W. Loss-aware throughput estimation scheduler for multi-path TCP in heterogeneous wireless networks. IEEE Trans. Wirel. Commun. 2021, 20, 3336–3349. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Pan, L.; Kumar, N.; Doss, R.; Vu, H.L. Multipath TCP meets transfer learning: A novel edge-based learning for industrial IoT. IEEE Internet Things J. 2021, 8, 10299–10307. [Google Scholar] [CrossRef]
- Morawski, M.; Ignaciuk, P. A green multipath TCP framework for industrial internet of things applications. Comput. Netw. 2021, 187, 107831. [Google Scholar] [CrossRef]
- Aljubayri, M.; Peng, T.; Shikh-Bahaei, M. Reduce delay of multipath TCP in IoT networks. Wirel. Netw. 2021, 27, 4189–4198. [Google Scholar] [CrossRef]
- Silva, C.F.; Ferlin, S.; Alay, O.; Brunstrom, A.; Kimura, B.Y. IoT traffic offloading with multipath TCP. IEEE Commun. 2021, 59, 51–57. [Google Scholar] [CrossRef]
- Le, T.A.; Hong, C.S.; Razzaque, M.A.; Lee, S.; Jung, H. ecMTCP: An energy-aware congestion control algorithm for multipath TCP. IEEE Commun. Lett. 2012, 16, 275–277. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Wang, H.; Xu, C.; Gong, W.; Xu, C. Measurement, analysis, and enhancement of multipath TCP energy efficiency for datacenters. IEEE/ACM Trans. Netw. 2020, 28, 57–70. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, M.; Walid, A.; Low, S. Energy efficient multipath TCP for mobile devices. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Philadelphia, PA, USA, 11–14 August 2014; ACM: New York, NY, USA, 2014; pp. 257–266. [Google Scholar]
- Pham, L.; Vo, P.L.; Le, T.-A. An energy-aware multipath congestion control protocol for mobile devices. In Proceedings of the 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing, Da Nang, Vietnam, 9–11 January 2017; IEEE: New York City, NY, USA, 2017; pp. 44–48. [Google Scholar]
- Chen, S.; Yuan, Z.; Muntean, G.-M. An energy-aware multipath-TCP-based content delivery scheme in heterogeneous wireless networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference, Shanghai, China, 7–10 April 2013; IEEE: New York, NY, USA, 2013; pp. 1291–1296. [Google Scholar]
- Lim, Y.-S.; Chen, Y.-C.; Nahum, E.M.; Towsley, D.; Gibbens, R.J.; Cecchet, E. Design, implementation, and evaluation of energy-aware multi-path TCP. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, Heidelberg, Germany, 1–4 December 2015; ACM: New York, NY, USA, 2015; pp. 1–13. [Google Scholar]
- Arain, Z.A.; Qiu, X.; Zhong, L.; Wang, M.; Chen, X.; Xiong, Y.; Nahida, K.; Xu, C. Stochastic optimization of multipath TCP for energy minimization and network stability over heterogeneous wireless network. KSII Trans. Internet Inf. Syst. (TIIS) 2021, 15, 195–215. [Google Scholar]
- Cao, Y.; Chen, S.; Liu, Q.; Zuo, Y.; Wang, H.; Huang, M. QoE-driven energy-aware multipath content delivery approach for MPTCP-based mobile phones. China Commun. 2017, 14, 90–103. [Google Scholar] [CrossRef]
- Palash, M.R.; Chen, K.; Khan, I. Bandwidth-need driven energy efficiency improvement of MPTCP users in wireless networks. IEEE Trans. Green Commun. Netw. 2019, 3, 343–355. [Google Scholar] [CrossRef]
- Dong, P.; Shen, R.; Li, Y.; Nie, C.; Xie, J.; Gao, K.; Zhang, L. An Energy-Saving Scheduling Algorithm for Multipath TCP in Wireless Networks. Electronics 2022, 11, 490. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Wang, H. On energy-efficient congestion control for multipath TCP. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems, Atlanta, GA, USA, 5–8 June 2017; IEEE: New York, NY, USA, 2017; pp. 351–360. [Google Scholar]
- Ferlin, S.; Alay, O.; Hayes, D.; Welzl, M.; Dreibholz, T. Revisiting congestion control for multipath TCP with shared bottleneck detection. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–9. [Google Scholar]
- Huang, J.; Qian, F.; Gerber, A.; Mao, Z.M.; Sen, S.; Spatscheck, O. A close examination of performance and power characteristics of 4G LTE networks. In Proceedings of the 10th international Conference on Mobile Systems, Applications, and Services, Low Wood Bay, Lake Distric, UK, 25–29 June 2012; ACM: New York, NY, USA, 2012; pp. 225–238. [Google Scholar]
- Wischik, D.; Raiciu, C.; Greenhalgh, A.; Handley, M. Design, implementation and evaluation of congestion control for multipath TCP. In Proceedings of the Usenix Conference on Networked Systems Design and Implementation, Boston, MA, USA, 30 March–1 April 2011; USENIX Association: New York, NY, USA, 2011; pp. 99–112. [Google Scholar]
- Cao, Y.; Xu, M.; Fu, X. Delay-based congestion control for multipath TCP. In Proceedings of the IEEE International Conference on Network Protocols, Austin, TX, USA, 30 October–2 November 2012; IEEE: New York, NY, USA, 2012; pp. 1–10. [Google Scholar]
- Khalili, R.; Gast, N.G.; Popovic, M.; Boudec, J.Y.L. MPTCP is not pareto-optimal: Performance issues and a possible solution. IEEE/ACM Trans. Netw. 2013, 21, 1651–1665. [Google Scholar] [CrossRef]
- Peng, Q.; Walid, A.; Hwang, J.; Low, S.H. Multipath TCP: Analysis, design and implementation. IEEE/ACM Trans. Netw. 2016, 24, 596–609. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lim, Y.-S.; Gibbens, R.J.; Nahum, E.M.; Khalili, R.; Towsley, D. A measurement-based study of multipath TCP performance over wireless networks. In Proceedings of the 2013 Conference on Internet Measurement Conference, Barcelona, Spain, 23–25 October 2013; ACM: New York, NY, USA, 2013; pp. 455–468. [Google Scholar]
- Dong, P.; Yang, W.; Tang, W.; Huang, J.; Wang, H.; Pan, Y.; Wang, J. Reducing transport latency for short flows with multipath TCP. J. Netw. Comput. Appl. 2018, 108, 20–36. [Google Scholar] [CrossRef]
- Ma, L.; Yu, F.R.; Leung, V.C. Performance improvements of mobile SCTP in integrated heterogeneous wireless networks. IEEE Trans. Wireless Commun. 2007, 6, 3567–3577. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Gao, S.; Xue, C.; Wang, X.; Lu, S. SmartCC: A reinforcement learning approach for multipath TCP congestion control in heterogeneous networks. IEEE J. Sel. Areas Commun. 2019, 37, 2621–2633. [Google Scholar] [CrossRef]
- Chaudhary, R.; Aujla, G.S.; Garg, S.; Kumar, N.; Rodrigues, J.J. SDN-enabled multi-attribute-based secure communication for smart grid in IIoT environment. IEEE Trans. Ind. Inform. 2018, 14, 2629–2640. [Google Scholar] [CrossRef]
- Chen, C.W. Internet of video things: Next-generation IoT with visual sensors. IEEE Internet Things J. 2020, 7, 6676–6685. [Google Scholar] [CrossRef]
Parameters | Definition |
---|---|
Number of rounds transmitted by subflow r. | |
The accumulated data segements transmitted until the round. | |
The elapsed time until the round. | |
Subflow r’s congestion window during the round. | |
Subflow r’s slow start threshold during the round. | |
Subflow r’s RTT. | |
Subflow r’s packet loss rate in the round. |
Parameter | Design Range |
---|---|
Data packet size | 1460 bytes |
TCP ACK size | 40 bytes |
Number of subflows | 8 |
WiFi capacity | 5–10 Mbps |
LTE capacity | 15–20 Mbps |
Data packet size | 1460 bytes |
WiFi RTT | 40–60 ms |
LTE RTT | 100–200 ms |
WiFi loss rate | 0–1% |
LTE loss rate | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Cao, Y.; Xiong, N.; Dong, P. EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems. Electronics 2022, 11, 3104. https://doi.org/10.3390/electronics11193104
Dong Z, Cao Y, Xiong N, Dong P. EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems. Electronics. 2022; 11(19):3104. https://doi.org/10.3390/electronics11193104
Chicago/Turabian StyleDong, Zihang, Yunming Cao, Naixue Xiong, and Pingping Dong. 2022. "EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems" Electronics 11, no. 19: 3104. https://doi.org/10.3390/electronics11193104
APA StyleDong, Z., Cao, Y., Xiong, N., & Dong, P. (2022). EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-Based Power Grid Monitoring Systems. Electronics, 11(19), 3104. https://doi.org/10.3390/electronics11193104