The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs
Abstract
:1. Introduction
2. Test Circuit and Experimental Setup
2.1. Test Circuit
2.2. TID Experiment
2.3. Heavy Ion Irradiation
3. Experimental Results
3.1. Effect of TID on the 6T SRAM SEU cross-section
3.2. Effect of Data Pattern on the 6T SRAM SEU cross-section
3.3. Effect of TID on the 7T SRAM SEU cross-section
4. Discussion
4.1. Transient Propagation Circuit Analysis for 7T SRAM
4.2. Effect of TID on the OFF-State Equivalent Resistance of Delay Transistor N5
4.3. The Advantages of Suppressing SEU with TID
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, J.L.; Dyer, C.S.; Stassinopoulos, E.G. Space, atmospheric, and terrestrial radiation environments. IEEE Trans. Nucl. Sci. 2003, 50, 466–482. [Google Scholar] [CrossRef] [Green Version]
- Xapsos, M. A Brief History of Space Climatology: From the Big Bang to the Present. IEEE Trans. Nucl. Sci. 2019, 66, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Dodd, P.E.; Massengill, L.W. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 2003, 50, 583–602. [Google Scholar] [CrossRef]
- Baumann, R.C. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 2005, 5, 305–316. [Google Scholar] [CrossRef]
- Dodd, P.E.; Shaneyfelt, M.R.; Schwank, J.R.; Felix, J.A. Current and Future Challenges in Radiation Effects on CMOS Electronics. IEEE Trans. Nucl. Sci. 2010, 57, 1747–1763. [Google Scholar] [CrossRef]
- Kobayashi, D. Scaling Trends of Digital Single-Event Effects: A Survey of SEU and SET Parameters and Comparison With Transistor Performance. IEEE Trans. Nucl. Sci. 2021, 68, 124–148. [Google Scholar] [CrossRef]
- Binder, D.; Smith, E.C.; Holman, A.B. Satellite Anomalies from Galactic Cosmic Rays. IEEE Trans. Nucl. Sci. 1975, 22, 2675–2680. [Google Scholar] [CrossRef]
- Barillot, C.; Calvel, P. Review of commercial spacecraft anomalies and single-event-effect occurrences. IEEE Trans. Nucl. Sci. 1996, 43, 453–460. [Google Scholar] [CrossRef]
- Normand, E. Single-event effects in avionics. IEEE Trans. Nucl. Sci. 1996, 43, 461–474. [Google Scholar] [CrossRef]
- Harboe-Sorensen, R.; Poivey, C.; Zadeh, A.; Keating, A.; Fleurinck, N.; Puimege, K.; Guerre, F.X.; Lochon, F.; Kaddour, M.; Li, L.; et al. PROBA-II Technology Demonstration Module In-Flight Data Analysis. IEEE Trans. Nucl. Sci. 2012, 59, 1086–1091. [Google Scholar] [CrossRef]
- Ecoffet, R. Overview of In-Orbit Radiation Induced Spacecraft Anomalies. IEEE Trans. Nucl. Sci. 2013, 60, 1791–1815. [Google Scholar] [CrossRef]
- Bessot, D.; Velazco, R. Design of SEU-hardened CMOS memory cells: The HIT cell. In Proceedings of the RADECS 93—Second European Conference on Radiation and its Effects on Components and Systems, St. Malo, France, 13–16 September 1993; pp. 563–570. [Google Scholar] [CrossRef]
- Calin, T.; Nicolaidis, M.; Velazco, R. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci. 1996, 43, 2874–2878. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Dodd, P.E. Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical Mechanisms, and Foundations for Hardness Assurance. IEEE Trans. Nucl. Sci. 2013, 60, 2074–2100. [Google Scholar] [CrossRef]
- Hughes, H.L.; Benedetto, J.M. Radiation effects and hardening of MOS technology: Devices and circuits. IEEE Trans. Nucl. Sci. 2003, 50, 500–521. [Google Scholar] [CrossRef]
- Narasimham, B.; Gambles, J.W.; Shuler, R.L.; Bhuva, B.L.; Massengill, L.W. Quantifying the Effect of Guard Rings and Guard Drains in Mitigating Charge Collection and Charge Spread. IEEE Trans. Nucl. Sci. 2008, 55, 3456–3460. [Google Scholar] [CrossRef]
- Liu, X.; Cai, L.; Liu, B.; Yang, X.; Cui, H.; Li, C. Total Ionizing Dose Hardening of 45 nm FD-SOI MOSFETs Using Body-Tie Biasing. IEEE Access 2019, 7, 51276–51283. [Google Scholar] [CrossRef]
- Soliman, K.; Nichols, D.K. Latchup in CMOS Devices from Heavy Ions. IEEE Trans. Nucl. Sci. 1983, 30, 4514–4519. [Google Scholar] [CrossRef]
- Bruguier, G.; Palau, J.M. Single particle-induced latchup. IEEE Trans. Nucl. Sci. 1996, 43, 522–532. [Google Scholar] [CrossRef]
- Hsieh, C.M.; Murley, P.C.; Brien, R.R.O. Dynamics of Charge Collection from Alpha-Particle Tracks in Integrated Circuits. In Proceedings of the 1981 International Reliability Physics Symposium, Orlando, FL, USA, 7–9 April 1981; pp. 38–42. [Google Scholar]
- Schwank, J.R.; Ferlet-Cavrois, V.; Shaneyfelt, M.R.; Paillet, P.; Dodd, P.E. Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 2003, 50, 522–538. [Google Scholar] [CrossRef]
- Barnaby, H.J. Total-Ionizing-Dose Effects in Modern CMOS Technologies. IEEE Trans. Nucl. Sci. 2006, 53, 3103–3121. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Ferlet-Cavrois, V. Radiation Effects in MOS Oxides. IEEE Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Raine, M.; Hubert, G.; Gaillardin, M.; Paillet, P.; Bournel, A. Monte Carlo Prediction of Heavy Ion Induced MBU Sensitivity for SOI SRAMs Using Radial Ionization Profile. IEEE Trans. Nucl. Sci. 2011, 58, 2607–2613. [Google Scholar] [CrossRef]
- Raine, M.; Gaillardin, M.; Lagutere, T.; Duhamel, O.; Paillet, P. Estimation of the Single-Event Upset Sensitivity of Advanced SOI SRAMs. IEEE Trans. Nucl. Sci. 2018, 65, 339–345. [Google Scholar] [CrossRef]
- Liu, M.S.; Liu, H.Y.; Brewster, N.; Nelson, D.; Golke, K.W.; Kirchner, G.; Hughes, H.L.; Campbell, A.; Ziegler, J.F. Limiting Upset Cross Sections of SEU Hardened SOI SRAMs. IEEE Trans. Nucl. Sci. 2006, 53, 3487–3493. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Felix, J.A.; Dodd, P.E.; Baggio, J.; Ferlet-Cavrois, V.; Paillet, P.; Hash, G.L.; Flores, R.S.; Massengill, L.W.; et al. Effects of Total Dose Irradiation on Single-Event Upset Hardness. IEEE Trans. Nucl. Sci. 2006, 53, 1772–1778. [Google Scholar] [CrossRef]
- Pereira, E.C.F.; Gonçalez, O.L.; Vaz, R.G.; Federico, C.A.; Both, T.H.; Wirth, G.I. The effects of total ionizing dose on the neutron SEU cross section of a 130 nm 4 Mb SRAM memory. In Proceedings of the 2014 15th Latin American Test Workshop—LATW, Fortaleza, Brazil, 12–15 March 2014; pp. 1–4. [Google Scholar]
- Xiao, Y.; Guo, H.-X.; Zhang, F.-Q.; Zhao, W.; Wang, Y.-P.; Zhang, K.-Y.; Ding, L.-L.; Fan, X.; Luo, Y.-H.; Wang, Y.-M. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation. Chin. Phys. B 2014, 23, 118503. [Google Scholar] [CrossRef]
- Artola, L.; Gaillardin, M.; Hubert, G.; Raine, M.; Paillet, P. Modeling Single Event Transients in Advanced Devices and ICs. IEEE Trans. Nucl. Sci. 2015, 62, 1528–1539. [Google Scholar] [CrossRef]
- Zheng, Q.; Cui, J.; Liu, M.; Zhou, H.; Liu, M.; Wei, Y.; Su, D.; Ma, T.; Lu, W.; Yu, X.; et al. Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs. IEEE Trans. Nucl. Sci. 2017, 64, 1897–1904. [Google Scholar] [CrossRef]
- Zheng, Q.; Cui, J.; Lu, W.; Guo, H.; Liu, J.; Yu, X.; Wei, Y.; Wang, L.; Liu, J.; He, C.; et al. The Increased Single-Event Upset Sensitivity of 65-nm DICE SRAM Induced by Total Ionizing Dose. IEEE Trans. Nucl. Sci. 2018, 65, 1920–1927. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E. BUSFET-a radiation-hardened SOI transistor. IEEE Trans. Nucl. Sci. 1999, 46, 1809–1816. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Schwank, J.R.; Dodd, P.E.; Shaneyfelt, M.R.; Feli, J.A.; Hash, G.L.; Ferlet-Cavrois, V.; Paillet, P.; Baggio, J.; Tangyunyong, P.; Blackmore, E. Issues for single-event proton testing of SRAMs. IEEE Trans. Nucl. Sci. 2004, 51, 3692–3700. [Google Scholar] [CrossRef]
- Faccio, F.; Cervelli, G. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Trans. Nucl. Sci. 2005, 52, 2413–2420. [Google Scholar] [CrossRef] [Green Version]
- Faccio, F.; Michelis, S.; Cornale, D.; Paccagnella, A.; Gerardin, S. Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs. IEEE Trans. Nucl. Sci. 2015, 62, 2933–2940. [Google Scholar] [CrossRef]
- Wu, X.; Lu, W.; Wang, X.; Xi, S.-B.; Guo, Q.; Li, Y.-D. Total ionizing dose effect on 0.18 μm narrow-channel NMOS transistors. Acta Phys. Sin. 2013, 62, 136101. [Google Scholar] [CrossRef]
- Zhou, H.; Cui, J.-W.; Zheng, Q.-W.; Guo, Q.; Ren, D.-Y.; Yu, X.-F. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Phys. Sin. 2015, 64, 086101. [Google Scholar] [CrossRef]
- Zhang, H.; Bi, J.; Wang, H.; Hu, H.; Li, J.; Ji, L.; Liu, M. Study of total ionizing dose induced read bit errors in magneto-resistive random access memory. Microelectr. Reliab. 2016, 67, 104–110. [Google Scholar] [CrossRef]
Ion Species | Air/Al-Foil (mm)/(μm) | Energy at Device Surface (MeV) | LET at Device Surface (MeV·cm2/mg) | Ion Range (μm) |
---|---|---|---|---|
86Kr | 30/0 | 1841 | 20.5 | 274 |
50/100 | 1154 | 27.2 | 150 | |
50/180 | 480 | 37.6 | 59 | |
209Bi | 30/0 | 923 | 99.8 | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Li, B.; Liu, H.; Yang, J.; Jiao, Y.; Chen, Q.; Sun, Y.; Liu, J. The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs. Electronics 2022, 11, 3188. https://doi.org/10.3390/electronics11193188
Zhao P, Li B, Liu H, Yang J, Jiao Y, Chen Q, Sun Y, Liu J. The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs. Electronics. 2022; 11(19):3188. https://doi.org/10.3390/electronics11193188
Chicago/Turabian StyleZhao, Peixiong, Bo Li, Hainan Liu, Jinhu Yang, Yang Jiao, Qiyu Chen, Youmei Sun, and Jie Liu. 2022. "The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs" Electronics 11, no. 19: 3188. https://doi.org/10.3390/electronics11193188
APA StyleZhao, P., Li, B., Liu, H., Yang, J., Jiao, Y., Chen, Q., Sun, Y., & Liu, J. (2022). The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs. Electronics, 11(19), 3188. https://doi.org/10.3390/electronics11193188