Convolutional Neural Networks Used to Date Photographs
Abstract
:1. Introduction
2. Related Works
3. Convolutional Neural Networks Overview
3.1. Convolutional Neural Network Layers
3.1.1. Convolution Layer
3.1.2. Pooling Layer
- min-pooling: this operation takes the minimum value found in the window.
- average-pooling: this operation computes the average of the values contained in the window.
- max-pooling: this operation takes the maximum value found in the window.
3.1.3. Softmax Layer
4. Dataset and Processing
4.1. Network Output
- Linear output: The output is a tensor with the year to which the analyzed image belongs.
- Binary output: The output is a vector whose size is equal to the number of years in the period in which the photographs of the dataset were taken. All the elements of the vector would have a value of 0, except the one corresponding to the year identified for the image being analyzed, which would have a value of 1.
- Binary output by blocks: The range of years of the dataset is divided into blocks of a certain size (five years, ten years, …) and the output is a vector with one element for each block. The value 0 is assigned to all the elements of the vector, except the one corresponding to the block that contains the year that has been estimated for the photograph.
- Gaussian output: The output is a vector with one element for each possible year that indicates a range of certainty. Therefore, a tensor is used that stores values of a Gaussian function centered on the real year of the photograph, which approaches 0 when it moves away from the range that we want to accept as “reasonable”.
4.2. Training, Validation and Testing Datasets
5. Experimentation
5.1. Initial Model
5.2. Second Model
5.3. Third Model
5.4. Fourth Model
5.5. Analysis of Photographs Grouped by Decades
5.6. Model Evaluation with Respect to Color
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camera & Imaging Products Association; JEITA. Exchangeable Image File Format for Digital Still Cameras: EXIF Version 2.32; JEITA: Tokyo, Japan, 2019. [Google Scholar]
- Rohatgi, R.; Kapoor, A. Importance of still photography at scene of crime: A forensic vs. judicial perspective. J. Harmon. Res. Appl. Sci. 2014, 2, 271–274. [Google Scholar]
- Gabel, V.P. Artificial Vision; Springer: Munich, Germany, 2017. [Google Scholar]
- Molnar, C. Interpretable Machine Learning; Lulu. com: Raleigh, NC, USA, 2020. [Google Scholar]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of artificial intelligence in transport: An overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Román, J.Á.; Pérez-Delgado, M.L. A Proposal for the organisational measure in intelligent systems. Appl. Sci. 2020, 10, 1806. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Zhang, D.; Han, S.; Zhao, J.; Zhang, Z.; Qu, C.; Ke, Y.; Chen, X. Image based forest fire detection using dynamic characteristics with artificial neural networks. In Proceedings of the 2009 International Joint Conference on Artificial Intelligence, Hainan, China, 25–26 April 2009; pp. 290–293. [Google Scholar]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Shikler, R.; Woźniak, M. Optimizing the organic solar cell manufacturing process by means of AFM measurements and neural networks. Energies 2018, 11, 1221. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 2018, 8, 1–207. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Luo, H.; Xiong, C.; Fang, W.; Love, P.E.; Zhang, B.; Ouyang, X. Convolutional neural networks: Computer vision-based workforce activity assessment in construction. Autom. Constr. 2018, 94, 282–289. [Google Scholar] [CrossRef]
- Hongtao, L.; Qinchuan, Z. Applications of deep convolutional neural network in computer vision. J. Data Acquis. Process. 2016, 31, 1–17. [Google Scholar]
- Fang, W.; Zhong, B.; Zhao, N.; Love, P.E.; Luo, H.; Xue, J.; Xu, S. A deep learning-based approach for mitigating falls from height with computer vision: Convolutional neural network. Adv. Eng. Inform. 2019, 39, 170–177. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S. Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 2020, 140, 110071. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Maddikunta, P.K.R.; Pham, Q.V.; Gadekallu, T.R.; Chowdhary, C.L.; Alazab, M.; Piran, M.J. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain. Cities Soc. 2021, 65, 102589. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L.; Román-Gallego, J.Á. Medical image processing by swarm-based methods. In Role of Data-Intensive Distributed Computing Systems in Designing Data Solutions; EAI/Springer Innovations in Communication and Computing Series; Springer: New York, NY, USA, 2022. [Google Scholar]
- Sezer, A.; Altan, A. Detection of solder paste defects with an optimization-based deep learning model using image processing techniques. Solder. Surf. Mt. Technol. 2021, 33, 291–298. [Google Scholar] [CrossRef]
- Sezer, A.; Altan, A. Optimization of deep learning model parameters in classification of solder paste defects. In Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–6. [Google Scholar]
- Hemanth, D.J.; Deperlioglu, O.; Kose, U. An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput. Appl. 2020, 32, 707–721. [Google Scholar] [CrossRef]
- Akcay, S.; Kundegorski, M.E.; Willcocks, C.G.; Breckon, T.P. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Driss, S.B.; Soua, M.; Kachouri, R.; Akil, M. A comparison study between MLP and convolutional neural network models for character recognition. In Real-Time Image and Video Processing 2017; International Society for Optics and Photonics: San Diego, CA, USA, 2017; Volume 10223, p. 1022306. [Google Scholar]
- Andreotti, F.; Carr, O.; Pimentel, M.A.; Mahdi, A.; De Vos, M. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Gan, K.; Xu, D.; Lin, Y.; Shen, Y.; Zhang, T.; Hu, K.; Zhou, K.; Bi, M.; Pan, L.; Wu, W.; et al. Artificial intelligence detection of distal radius fractures: A comparison between the convolutional neural network and professional assessments. Acta Orthop. 2019, 90, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Eiler, F.; Graf, S.; Dorner, W. Artificial intelligence and the automatic classification of historical photographs. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; pp. 852–856. [Google Scholar]
- Bayr, U.; Puschmann, O. Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network. Ecol. Inform. 2019, 50, 220–233. [Google Scholar] [CrossRef]
- Mougiakakou, S.G.; Tsouchlaraki, A.L.; Cassios, C.; Nikita, K.S.; Matsopoulos, G.K.; Uzunoglu, N.K. SCAPEVIEWER: Preliminary results of a landscape perception classification system based on neural network technology. Ecol. Eng. 2005, 24, 5–15. [Google Scholar] [CrossRef]
- Lienhart, R.W.; Hartmann, A. Classifying images on the web automatically. J. Electron. Imaging 2002, 11, 445–454. [Google Scholar] [CrossRef]
- Szummer, M.; Picard, R.W. Indoor-outdoor image classification. In Proceedings of the 1998 IEEE International Workshop on Content-Based Access of Image and Video Database, Bombay, India, 3 January 1998; pp. 42–51. [Google Scholar]
- Yiu, E.C. Image Classification Using Color Cues and Texture Orientation. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, UK, 1996. [Google Scholar]
- Schettini, R.; Brambilla, C.; Cusano, C.; Ciocca, G. Automatic classification of digital photographs based on decision forests. Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 819–845. [Google Scholar] [CrossRef]
- Fernando, B.; Muselet, D.; Khan, R.; Tuytelaars, T. Color features for dating historical color images. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2589–2593. [Google Scholar]
- Palermo, F.; Hays, J.; Efros, A.A. Dating historical color images. In European Conference on Computer Vision; Springer: Heidelberg, Germany, 2012; pp. 499–512. [Google Scholar]
- Martin, P.; Doucet, A.; Jurie, F. Dating color images with ordinal classification. In Proceedings of the International Conference on Multimedia Retrieval, Glasgow, UK, 1–4 April 2014; pp. 447–450. [Google Scholar]
- Li, Y.; Hao, Z.; Lei, H. Survey of convolutional neural network. J. Comput. Appl. 2016, 36, 2508–2515. [Google Scholar]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, The Netherlands, 1992; pp. 65–93. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Müller, E.; Springstein, M.; Ewerth, R. “When was this picture taken?”—Image date estimation in the wild. In European Conference on Information Retrieval; Springer: New York, NY, USA, 2017; pp. 619–625. [Google Scholar]
- Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. In Proceedings of the NIPS 2017 Autodiff Workshop: The Future of Gradient-Based Machine Learning Software and Techniques, Long Beach, CA, USA, 9 December 2017. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Dogo, E.; Afolabi, O.; Nwulu, N.; Twala, B.; Aigbavboa, C. A comparative analysis of gradient descent-based optimization algorithms on convolutional neural networks. In Proceedings of the 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), Belgaum, India, 21–22 December 2018; pp. 92–99. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
Model | Best | Best | Images with Classification Error | ||
---|---|---|---|---|---|
Training Loss | Validation Loss | ≤5 Years | Years | >10 Years | |
Initial Model | 0.09330903756 | 0.1070820068684 | 224 | 127 | 318 |
Second Model | 0.05672707886 | 0.1054419262115 | 214 | 128 | 327 |
Third Model | 0.08476000656 | 0.1070820068684 | 205 | 166 | 298 |
Fourth Model | 0.09006916169 | 0.1059944923857 | 200 | 128 | 341 |
Model | Best | Best | Images with Classification Error | ||
---|---|---|---|---|---|
Training Loss | Validation Loss | ≤5 Years | Years | >10 Years | |
Initial Model | 0.09867622717 | 0.1058833766225 | 411 | 189 | 333 |
Second Model | 0.09532483934 | 0.1089749876550 | 369 | 225 | 339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román-Gallego, J.-Á.; Pérez-Delgado, M.-L.; San Gregorio, S.V. Convolutional Neural Networks Used to Date Photographs. Electronics 2022, 11, 227. https://doi.org/10.3390/electronics11020227
Román-Gallego J-Á, Pérez-Delgado M-L, San Gregorio SV. Convolutional Neural Networks Used to Date Photographs. Electronics. 2022; 11(2):227. https://doi.org/10.3390/electronics11020227
Chicago/Turabian StyleRomán-Gallego, Jesús-Ángel, María-Luisa Pérez-Delgado, and Sergio Vicente San Gregorio. 2022. "Convolutional Neural Networks Used to Date Photographs" Electronics 11, no. 2: 227. https://doi.org/10.3390/electronics11020227
APA StyleRomán-Gallego, J. -Á., Pérez-Delgado, M. -L., & San Gregorio, S. V. (2022). Convolutional Neural Networks Used to Date Photographs. Electronics, 11(2), 227. https://doi.org/10.3390/electronics11020227