FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image Segmentation
Abstract
:1. Introduction
- 1.
- In a medical image segmentation scenario, a novel Federated learning training paradigm called Federated Learning with Z-average and Cross-teaching (FLZaCt) is proposed to improve the knowledge communication effects among client models trained by the client under-sampled data, which protects the privacy and does not need extra data.
- 2.
- We present a new parameter-based communication method called the Z-average to construct differentiated multiple client models that maintain diverse knowledge about the semantic information.
- 3.
- We introduce a new distillation-based communication method called Cross-teaching that optimizes the local client model to learn more semantic information using the local ground truth and the other client models’ knowledge.
- 4.
- Extensive segmentation experiments demonstrate that our methods achieve superior performance over traditional methods with evaluations on our private aortic segmentation dataset and a public HAM10000 segmentation dataset.
2. Related Work
2.1. Federated Learning
2.2. Semantic Segmentation
3. Methods
3.1. Overview
Algorithm 1 The process of FedZaCt. |
|
3.2. Z-Average
3.3. Cross-Teaching
4. Experiments
4.1. Dataset
4.1.1. The Private Aortic Dataset
4.1.2. The Public HAM10000 Dataset
4.2. Experiment Implementations
4.3. Evaluation Metrics
5. Results and Discussion
5.1. Results
5.2. Ablation Study
5.2.1. The Differentiation among Multi-under-Sampled Datasets
5.2.2. The Performance of the Z-Average Method
5.2.3. The Performance of the Cross-Teaching Method
5.3. Discussion
5.4. Limitation and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Mei, J.; Yuille, A.L.; Xie, C. Are Transformers more robust than CNNs? Adv. Neural Inf. Process. Syst. 2021, 34, 26831–26843. [Google Scholar]
- Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 14–24. [Google Scholar]
- Jafari, M.H.; Girgis, H.; Abdi, A.H.; Liao, Z.; Pesteie, M.; Rohling, R.; Gin, K.; Tsang, T.; Abolmaesumi, P. Semi-supervised learning for cardiac left ventricle segmentation using conditional deep generative models as prior. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 649–652. [Google Scholar]
- Zyuzin, V.; Chumarnaya, T. Comparison of Unet architectures for segmentation of the left ventricle endocardial border on two-dimensional ultrasound images. In Proceedings of the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 25–26 April 2019; pp. 110–113. [Google Scholar]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated learning for internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Wong, K.K.; Poor, H.V.; Cui, S. Federated learning for 6G: Applications, challenges, and opportunities. Engineering 2021, 8, 33–41. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on Federated learning. Knowl. Based Syst. 2021, 216, 106775. [Google Scholar] [CrossRef]
- Hu, Z.; Shaloudegi, K.; Zhang, G.; Yu, Y. Federated learning meets multi-objective optimization. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2039–2051. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, L.Y.; Wang, S.; Lou, Y.; Huang, T.; Wu, D.O.; Gao, W. Toward knowledge as a service over networks: A deep learning model communication paradigm. IEEE J. Sel. Areas Commun. 2019, 37, 1349–1363. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, Q.; Lv, J. Communication-efficient Federated learning with compensated overlap-fedavg. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 192–205. [Google Scholar] [CrossRef]
- Huang, Y.; Gupta, S.; Song, Z.; Li, K.; Arora, S. Evaluating gradient inversion attacks and defenses in Federated learning. Adv. Neural Inf. Process. Syst. 2021, 34, 7232–7241. [Google Scholar]
- Wu, L.; Chen, A.; Salama, P.; Dunn, K.W.; Delp, E.J. An Ensemble Learning and Slice Fusion Strategy for Three-Dimensional Nuclei Instance Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–23 June 2022; pp. 1884–1894. [Google Scholar]
- Tang, P.; Yang, X.; Nan, Y.; Xiang, S.; Liang, Q. Feature pyramid nonlocal network with transform modal ensemble learning for breast tumor segmentation in ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3549–3559. [Google Scholar] [CrossRef]
- Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. arXiv 2018, arXiv:1811.11479. [Google Scholar]
- Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble distillation for robust model fusion in Federated learning. Adv. Neural Inf. Process. Syst. 2020, 33, 2351–2363. [Google Scholar]
- Isobe, T.; Jia, X.; Chen, S.; He, J.; Shi, Y.; Liu, J.; Lu, H.; Wang, S. Multi-target domain adaptation with collaborative consistency learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8187–8196. [Google Scholar]
- Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-supervised semantic segmentation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2613–2622. [Google Scholar]
- Zhong, Z.; Zhou, Y.; Wu, D.; Chen, X.; Chen, M.; Li, C.; Sheng, Q.Z. P-FedAvg: Parallelizing Federated learning with theoretical guarantees. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Virtual, 10–13 May 2021; pp. 1–10. [Google Scholar]
- Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of Federated learning algorithms. In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, Rennes, France, 31 August 2018; pp. 1–8. [Google Scholar]
- Yuan, H.; Ma, T. Federated accelerated stochastic gradient descent. Adv. Neural Inf. Process. Syst. 2020, 33, 5332–5344. [Google Scholar]
- Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar]
- Li, Q.; He, B.; Song, D. Model-contrastive Federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10713–10722. [Google Scholar]
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-preserving Federated brain tumour segmentation. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 133–141. [Google Scholar]
- Liu, Q.; Chen, C.; Qin, J.; Dou, Q.; Heng, P.A. Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1013–1023. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Saidu, I.C.; Csató, L. Active learning with bayesian UNet for efficient semantic image segmentation. J. Imaging 2021, 7, 37. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, H. Learning adversarially enhanced heatmaps for aorta segmentation in CTA. In Proceedings of the 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 9–10 December 2019; pp. 1–5. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Florian, L.C.; Adam, S.H. Rethinking atrous convolution for semantic image segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Mou, L.; Chen, L.; Cheng, J.; Gu, Z.; Zhao, Y.; Liu, J. Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med Imaging 2019, 39, 1392–1403. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3684–3692. [Google Scholar]
- Hiasa, Y.; Otake, Y.; Takao, M.; Ogawa, T.; Sugano, N.; Sato, Y. Automated muscle segmentation from clinical CT using Bayesian U-net for personalized musculoskeletal modeling. IEEE Trans. Med. Imaging 2019, 39, 1030–1040. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking BiSeNet for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9716–9725. [Google Scholar]
- Hou, R.; Zhou, D.; Nie, R.; Liu, D.; Ruan, X. Brain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical model. Med Biol. Eng. Comput. 2019, 57, 887–900. [Google Scholar] [CrossRef]
- Huang, C.; Tian, G.; Lan, Y.; Peng, Y.; Ng, E.Y.K.; Hao, Y.; Cheng, Y.; Che, W. A new pulse coupled neural network (PCNN) for brain medical image fusion empowered by shuffled frog leaping algorithm. Front. Neurosci. 2019, 13, 210. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Bai, W.; Zeng, N.; Wang, S. A fast fractal based compression for MRI images. IEEE Access 2019, 7, 62412–62420. [Google Scholar] [CrossRef]
- Krebs, J.; Mansi, T.; Ayache, N.; Delingette, H. Probabilistic motion modeling from medical image sequences: Application to cardiac cine-MRI. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Shenzhen, China, 13 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 176–185. [Google Scholar]
- Yang, T.; Han, J.; Zhu, H.; Li, T.; Liu, X.; Gu, X.; Liu, X.; An, S.; Zhang, Y.; Zhang, Y.; et al. Segmentation of five components in four chamber view of fetal echocardiography. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1962–1965. [Google Scholar]
- Tschandl, P. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 1–9. [Google Scholar] [CrossRef]
Scheme | Paradigm | Unet | DeepLabV3+ | STDC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IoU | Dice | Rrec | Recall | IoU | Dice | Rrec | Recall | IoU | Dice | Rrec | Recall | ||
Central | - | 80.30 | 88.36 | 92.76 | 87.22 | 78.54 | 87.06 | 89.11 | 86.33 | 72.16 | 82.21 | 88.68 | 80.80 |
Federated | FedAvg1 | 80.26 | 88.99 | 92.87 | 86.72 | 78.63 | 87.17 | 89.33 | 86.64 | 72.52 | 82.13 | 88.37 | 79.98 |
FedAvg | 80.78 | 88.73 | 92.39 | 85.78 | 78.20 | 86.78 | 90.22 | 85.31 | 72.77 | 82.31 | 88.15 | 80.70 | |
FedAvg+Ct | 81.51 | 89.28 | 91.55 | 88.21 | 78.94 | 87.39 | 90.28 | 86.13 | 72.84 | 82.41 | 88.69 | 80.41 | |
Fed+Za | 81.24 | 88.91 | 93.18 | 86.51 | 79.34 | 87.66 | 89.91 | 86.89 | 73.34 | 82.77 | 89.15 | 80.50 | |
FedZaCt (Ours) | 82.10 | 89.62 | 92.20 | 88.24 | 79.67 | 87.89 | 89.57 | 87.63 | 73.75 | 83.10 | 89.22 | 80.91 |
Scheme | Paradigm | Unet | DeepLabV3+ | ||
---|---|---|---|---|---|
IoU | Dice | IoU | Dice | ||
Central | - | 85.52 | 92.29 | 86.15 | 92.51 |
Federated | FedAvg | 84.69 | 91.78 | 85.74 | 92.31 |
FedAvg+Ct | 85.22 | 92.10 | 85.72 | 92.10 | |
Fed+Za | 85.57 | 92.38 | 86.20 | 92.56 | |
FedZaCt (Ours) | 85.65 | 92.40 | 86.38 | 92.67 |
Paradigm | client1 | client2 | client3 | client4 | Aggregation |
---|---|---|---|---|---|
FedAvg | 71.03 ± 7.73 | 72.55 ± 7.05 | 72.01 ± 3.62 | 79.64 ± 0.78 | 80.78 ± 0.83 |
FedAvg+Ct | 76.13 ± 4.30 | 74.12 ± 2.68 | 75.48 ± 1.94 | 79.11 ± 1.03 | 81.51 ± 0.39 |
Fed+Za | 81.60 ± 0.70 | 79.42 ± 0.80 | 79.68 ± 0.89 | 78.40 ± 1.32 | 81.24 ± 1.74 |
FedZaCt (Ours) | 81.04 ± 1.03 | 79.22 ± 0.64 | 79.72 ± 0.84 | 78.69 ± 0.53 | 82.10 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Xu, J.; Zhu, M.; An, S.; Gong, M.; Zhu, H. FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image Segmentation. Electronics 2022, 11, 3262. https://doi.org/10.3390/electronics11203262
Yang T, Xu J, Zhu M, An S, Gong M, Zhu H. FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image Segmentation. Electronics. 2022; 11(20):3262. https://doi.org/10.3390/electronics11203262
Chicago/Turabian StyleYang, Tingyang, Jingshuang Xu, Mengxiao Zhu, Shan An, Ming Gong, and Haogang Zhu. 2022. "FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image Segmentation" Electronics 11, no. 20: 3262. https://doi.org/10.3390/electronics11203262
APA StyleYang, T., Xu, J., Zhu, M., An, S., Gong, M., & Zhu, H. (2022). FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image Segmentation. Electronics, 11(20), 3262. https://doi.org/10.3390/electronics11203262