Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive
Abstract
:1. Introduction
2. System Structure and Mathematical Models
2.1. Mathematical Models of the Dual Three-Phase PMSM
2.2. Dual Three-Phase Two-Level Inverter
3. Traditional Model Predictive Torque Control Strategy
4. Proposed Model Predictive Torque Control Based on Virtual Voltage Vectors
4.1. Construction of the Virtual Voltage Vectors
4.2. Common-Mode Voltage Suppression
4.3. Overall Control
5. Simulation and Experimental Results
5.1. Simulation Results
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Levi, E. Multiphase electric machines for variable-speed applications. IEEE Trans. Ind. Electron. 2008, 55, 1893–1909. [Google Scholar] [CrossRef]
- Barrero, F.; Duran, M.J. Recent advances in the design, modeling, and control of multiphase machines—Part I. IEEE Trans. Ind. Electron. 2016, 63, 449–458. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Kelly, M.; Kar, N.C. Dual three-phase PMSM torque modeling and maximum torque per peak current control through optimized harmonic current injection. IEEE Trans. Ind. Electron. 2018, 66, 3356–3368. [Google Scholar] [CrossRef]
- Demir, Y.; Aydin, M. A novel dual three-phase permanent magnet synchronous motor with asymmetric stator winding. IEEE Trans. Magn. 2016, 52, 8105005. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, Y.; Li, X. Fault-tolerant hybrid current control of dual three-phase PMSM with one phase open. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 10, 3418–3426. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Wei, X.; Liang, Z.; Kennel, R.; Rodriguez, J. Space-vector-optimized predictive control for dual three-phase PMSM with quick current response. IEEE Trans. Power Electron. 2021, 37, 4453–4462. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Li, W.; Li, Z.; Kar, N.C. Dual reference frame based current harmonic minimization for dual three-phase PMSM considering inverter voltage limit. IEEE Trans. Power Electron. 2020, 36, 8055–8066. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C. A Simplified model predictive control for a dual three-phase PMSM with reduced harmonic currents. IEEE Trans. Ind. Electron. 2018, 65, 9079–9089. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, D.; Liu, Z.; Ye, D.; Li, J. Common-mode voltage elimination for dual two-level inverter-fed asymmetrical six-phase PMSM. IEEE Trans. Power Electron. 2019, 35, 3828–3840. [Google Scholar] [CrossRef]
- Alcaide, A.M.; Wang, X.; Yan, H.; Leon, J.I.; Monopoli, V.G.; Buticchi, G.; Vazquez, S.; Liserre, M.; Franquelo, L.G. Common-mode voltage mitigation of dual three-phase voltage source inverters in a motor drive application. IEEE Access 2021, 9, 67477–67487. [Google Scholar] [CrossRef]
- Bojoi, R.; Lazzari, M.; Profumo, F.; Tenconi, A. Digital field-oriented control for dual three-phase induction motor drives. IEEE Trans. Ind. Appl. 2003, 39, 752–760. [Google Scholar] [CrossRef]
- Zhao, Y.; Lipo, T. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Appl. 1995, 31, 1100–1109. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Chen, J.; Hu, Y. Decoupled vector space decomposition based space vector modulation for dual three-phase three-level motor drives. IEEE Trans. Power Electron. 2018, 33, 10683–10697. [Google Scholar] [CrossRef]
- Bojoi, R.; Farina, F.; Tenconi, A.; Profumi, F.; Levi, E. Dual three-phase induction motor drive with digital current control in the stationary reference frame. Power Eng. 2006, 20, 40–43. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Chen, J.; Cheng, M. Fault-tolerant control of NPC three-level inverters-fed double-stator-winding PMSM drives based on vector space decomposition. IEEE Trans. Ind. Electron. 2017, 64, 8446–8458. [Google Scholar] [CrossRef]
- Li, W.; Wen, X.; Zhang, J. Harmonic current minimization in PMSM drive system using feedforward compensation based on torque ripple estimation. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019. [Google Scholar]
- Shao, B.; Zhu, Z.Q.; Feng, J.; Guo, S.; Li, Y.; Liao, W. Compensation of selective current harmonics for switching-table-based direct torque control of dual three-phase PMSM drives. IEEE Trans. Ind. Appl. 2021, 57, 2505–2515. [Google Scholar] [CrossRef]
- López, Ó.; Álvarez, J.; Malvar, J.; Yepes, A.G.; Vidal, A.; Baneira, F.; Pérez-Estévez, D.; Freije, F.D.; Doval-Gandoy, J. Space-vector PWM with common-mode voltage elimination for multiphase drives. IEEE Trans. Power Electron. 2016, 31, 8151–8161. [Google Scholar] [CrossRef]
- Duran, M.J.; Prieto, J.; Barrero, F.; Riveros, J.A.; Guzman, H. Space-vector PWM with reduced common-mode voltage for five-phase induction motor drives. IEEE Trans. Ind. Electron. 2012, 60, 4159–4168. [Google Scholar] [CrossRef]
- Vazquez, S.; Leon, J.I.; Franquelo, L.G.; Rodriguez, J.; Young, H.A.; Marquez, A.; Zanchetta, P. Model predictive control: A review of its applications in power electronics. IEEE Ind. Electron. Mag. 2014, 8, 16–31. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C. Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function. IEEE Trans. Ind. Electron. 2019, 67, 969–979. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C. Multi-vector-based model predictive torque control for a six-phase PMSM motor with fixed switching frequency. IEEE Trans. Energy Convers. 2019, 34, 1369–1379. [Google Scholar] [CrossRef]
- Chen, L.; Xu, H.; Sun, X.; Cai, Y. Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs. IEEE Trans. Transp. Electrif. 2021, 7, 1454–1465. [Google Scholar] [CrossRef]
- Fan, Z.H.; Wang, K. Triple virtual vectors based model predictive current control for dual three phase permanent magnet syn-chronous motor with low computational complexity. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, 31 October–3 November 2021. [Google Scholar]
- Liu, S.; Liu, C. Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans. Ind. Electron. 2021, 68, 2048–2058. [Google Scholar] [CrossRef]
Vector Types | Amplitudes |
---|---|
Large vectors Vmax | |
Middle vectors Vmidl | |
Sub-small vectors Vmids | |
Small vectors Vmin |
Vector Types in αβ Subplace | Vector Types in x-y Subplace |
---|---|
Large vectors Vmax | Small vectors Vmin |
Middle vectors Vmidl | Middle vectors Vmidl |
Sub-small vectors Vmids | Sub-small vectors Vmids |
Small vectors Vmin | Large vectors Vmax |
UCMV | Corresponding Voltage Vectors | Number |
---|---|---|
+Vdc | V77 | 1 |
+2Vdc/3 | V37, V57, V67, V73, V75, V76 | 6 |
+Vdc/3 | V17, V27, V33, V35, V36, V47, V53, V66, V55, V56, V63, V65, V71, V72, V74 | 15 |
0 | V07, V13, V15, V16, V23, V25, V26, V31, V32, V34, V43, V45, V46, V51, V52, V54, V61, V62, V64, V70 | 20 |
−Vdc/3 | V03, V05, V06, V11, V12, V14, V21, V22, V24, V30, V41, V42, V44, V50, V60 | 15 |
−2Vdc/3 | V02, V04, V10, V20, V40, V01 | 6 |
−Vdc | V00 | 1 |
Vector Types in α-β Subplace | Vector Types in x-y Subplace |
---|---|
Pole pairs np | 5 |
Stator resistance Rs | 0.08 Ω |
d-axis inductance Ld | 0.33 mH |
q-axis inductance Lq | 0.33 mH |
PMSM magnetic flux ψf | 0.01215 Wb |
DC-link voltage | 270 V |
Rotary inertia Jm | 72.96 × 10−6 kg·m2 |
Rated speed n | 11,000 r/min |
Rated stator current IN | 12A |
Rated torque TN | 2.2 N∙m |
Methods | THD of ia | Maximum uCMV (V) | Execution Time (μs) |
---|---|---|---|
Traditional MPTC | 11.27% | ±135 | 49.20 |
MPTC1 | 4.76% | ±45 | 32.70 |
MPTC2 | 2.87% | 0 | 27.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Zhao, R.; Xiao, R.; Liu, Z. Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive. Electronics 2022, 11, 3293. https://doi.org/10.3390/electronics11203293
Yuan Q, Zhao R, Xiao R, Liu Z. Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive. Electronics. 2022; 11(20):3293. https://doi.org/10.3390/electronics11203293
Chicago/Turabian StyleYuan, Qingqing, Renji Zhao, Rongyan Xiao, and Zhiyong Liu. 2022. "Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive" Electronics 11, no. 20: 3293. https://doi.org/10.3390/electronics11203293
APA StyleYuan, Q., Zhao, R., Xiao, R., & Liu, Z. (2022). Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive. Electronics, 11(20), 3293. https://doi.org/10.3390/electronics11203293