Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning
Abstract
:1. Introduction
2. Related Work
2.1. Machine Learning Techniques for CTR Prediction
2.2. Deep Neural Networks for CTR Prediction
2.3. Factorization Machines
3. Background and Methodology
3.1. Problem Description
3.2. Model Description
User Type | Definition | Reference |
---|---|---|
Legitimate user | The legitimate users’ goals are to defend or use the system. | [20] |
Legitimate users know the system’s files and where they can be found well. | [67] | |
Malicious user or attacker | Attacker gains access to data by exploiting legitimate users. | [20,68] |
Attackers exploit holes in IoT systems for personal gain. | [69] | |
Expert user | If a cyber danger is detected, it would use a variety of informative sources to alert legitimate users and sustain its continuity under attack. | [20] |
Experts know a lot about a subject and are familiar with how the discipline is structured. This involves the ability to comprehend and contribute to the discipline’s vocabulary and technique. | [70] | |
Non-expert user | A non-expert user is unaware of the underlying functional, usability, and security principles, and can use the system only with a set of instructions given. | [71] |
3.3. Click-Through Rate (CTR)
3.4. Factorization Machines
3.5. Neural Network Architecture
Algorithm 1 Pseudocode of factorization neural network |
Input: Sparse feature vector. Output: Predicted CTR value. 1. Input layer to input sparse feature vector into model. 2. Embedding layer to compress the input vector to a dense real-valued vector. 3. Factorization machine to compute hidden (latent) features. 4. A feed-forward neural network that learns high-order feature combinations. 5. Output layer with sigmoid function to predict the CTR value. |
3.6. Evaluation
4. Results and Discussion
4.1. Dataset and Settings
4.2. Results
4.3. Comparison with Related Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woźniak, M.; Połap, D.; Damaševičius, R.; Wei, W. Design of computational intelligence-based language interface for human-machine secure interaction. J. Univ. Comput. Sci. 2018, 24, 537–553. [Google Scholar]
- Paskevicius, P.; Damasevicius, R. Design of usable interface for a mobile e-commerce system. CEUR Workshop Proc. 2016, 1712, 31–35. [Google Scholar]
- Grundy, J.; Khalajzadeh, H.; McIntosh, J. Towards human-centric model-driven software engineering. In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), Prague, Czech Republic, 5–6 May 2020; pp. 229–238. [Google Scholar]
- Carmichael, D.; Cleave, D. How effective is social media advertising? A study of facebook social advertisements. In Proceedings of the 2012 International Conference for Internet Technology and Secured Transactions (ICITST 2012), London, UK, 10–12 December 2012; pp. 226–229. [Google Scholar]
- Vila, N.; Kuster, I. Consumer feelings and behaviours towards well designed websites. Inf. Manag. 2011, 48, 166–177. [Google Scholar] [CrossRef]
- Zailskaite-Jakste, L.; Ostreika, A.; Jakstas, A.; Staneviciene, E.; Damasevicius, R. Brand communication in social media: The use of image colours in popular posts. In Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2017), Opatija, Croatia, 22–26 May 2017; pp. 1373–1378. [Google Scholar] [CrossRef]
- Colbert, M.; Oliver, A.; Oikonomou, E. The effect of credibility of host site upon click rate through sponsored content. In Proceedings of the 9th International Conference on Persuasive Technology (PERSUASIVE 2014), Padua, Italy, 21–23 May 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 56–67. [Google Scholar] [CrossRef]
- Ullah, A.; Xiao, H.; Barker, T. A study into the usability and security implications of text and image based challenge questions in the context of online examination. Educ. Inf. Technol. 2019, 24, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Anwar, S.; Solehria, S. User interaction based framework for protecting user privacy in online social networks. In Proceedings of the ICISO 2013—The 14th International Conference on Informatics and Semiotics in Organisations, IFIP WG8.1 Working Conference, Riga, Latvia, 6–7 November 2013; pp. 82–90. [Google Scholar]
- Petelka, J.; Zou, Y.; Schaub, F. Put your warning where your link is: Improving and evaluating email phishing warnings. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Franz, A.; Zimmermann, V.; Albrecht, G.; Hartwig, K.; Reuter, C.; Benlian, A.; Vogt, J. SoK: Still plenty of phish in the sea—A taxonomy of user-oriented phishing interventions and avenues for future research. In Proceedings of the 17th Symposium on Usable Privacy and Security (SOUPS 2021), Vancouver, BC, Canada, 8–10 August 2021; pp. 339–357. [Google Scholar]
- Petrykina, Y.; Schwartz-Chassidim, H.; Toch, E. Nudging users towards online safety using gamified environments. Comput. Secur. 2021, 108, 102270. [Google Scholar] [CrossRef]
- Distler, V.; Lenzini, G.; Lallemand, C.; Koenig, V. The framework of security-enhancing friction: How UX can help users behave more securely. In Proceedings of the Pervasive Health: Pervasive Computing Technologies for Healthcare, Atlanta, GA, USA, 18–20 May 2020; pp. 45–58. [Google Scholar] [CrossRef]
- Ji, Z.; Pi, H.; Wei, W.; Xiong, B.; Wozniak, M.; Damasevicius, R. Recommendation based on review texts and social communities: A hybrid model. IEEE Access 2019, 7, 40416–40427. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Z.; Wu, S.; Zhang, X.; Wang, L. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 539–548. [Google Scholar]
- Shan, Y.; Hoens, T.R.; Jiao, J.; Wang, H.; Yu, D.; Mao, J. Deep crossing: Web-scale modeling without manually crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 255–262. [Google Scholar]
- Shubham, S.; Jain, N.; Gupta, V.; Mohan, S.; Ariffin, M.M.; Ahmadian, A. Identify glomeruli in human kidney tissue images using a deep learning approach. Soft Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.; Dehghantanha, A.; Srivastava, G.; Mohan, S.; Rababah, A. Cost optimization of secure routing with untrusted devices in software defined networking. J. Parallel Distrib. Comput. 2020, 143, 36–46. [Google Scholar] [CrossRef]
- Vallathan, G.; John, A.; Thirumalai, C.; Mohan, S.; Srivastava, G.; Lin, J.C.-W. Suspicious activity detection using deep learning in secure assisted living IoT environments. J. Supercomput. 2020, 77, 3242–3260. [Google Scholar] [CrossRef]
- Grobler, M.; Gaire, R.; Nepal, S. User, Usage and Usability: Redefining Human Centric Cyber Security. Front. Big Data 2021, 4, 583723. [Google Scholar] [CrossRef]
- Damaševičius, R.; Toldinas, J.; Venčkauskas, A.; Grigaliūnas, Š.; Morkevičius, N.; Jukavičius, V. Visual analytics for cyber security domain: State-of-the-art and challenges. In Proceedings of the International Conference on Information and Software Technologies (ICIST 2019), Jingde, China, 19–22 November 2019; pp. 256–270. [Google Scholar] [CrossRef]
- Damasevicius, R.; Toldinas, J.; Venckauskas, A.; Grigaliunas, S.; Morkevicius, N. Technical threat intelligence analytics: What and how to visualize for analytic process. In Proceedings of the 24th International Conference Electronics (ELECTRONICS 2020), Palanga, Lithuania, 15–17 June 2020. [Google Scholar] [CrossRef]
- McMahan, H.B.; Holt, G.; Sculley, D.; Young, M.; Ebner, D.; Grady, J.; Nie, L.; Phillips, T.; Davydov, E.; Golovin, D.; et al. Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1222–1230. [Google Scholar]
- Chapelle, O. Modeling delayed feedback in display advertising. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1097–1105. [Google Scholar]
- Graepel, T.; Borchert, T.; Candela, J.Q.; Herbrich, R. Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft’s bing search engine. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Madison, WI, USA, 21–24 June 2010; pp. 13–20. [Google Scholar] [CrossRef]
- Guo, H.; Chen, B.; Tang, R.; Zhang, W.; Li, Z.; He, X. An Embedding Learning Framework for Numerical Features in CTR Prediction. arXiv 2020, arXiv:2012.08986. [Google Scholar]
- Zhang, Y.; Dai, H.; Xu, C.; Feng, J.; Wang, T.; Bian, J.; Wang, B.; Liu, T.Y. Sequential Click Prediction for Sponsored Search with Recurrent Neural networks. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014. [Google Scholar]
- An, H.; Ren, J.; Wu, S. XGBDeepFM for CTR predictions in mobile advertising benefits from ad context. Math. Probl. Eng. 2020, 2020, 1747315. [Google Scholar] [CrossRef]
- Zhang, W.; Du, T.; Wang, J. Deep learning over multi-field categorical data. In European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2016; pp. 45–57. [Google Scholar]
- Qu, Y.; Fang, B.; Zhang, W.; Tang, R.; Niu, M.; Guo, H.; Yu, Y.; He, X. Product-based neural networks for user response prediction. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining, Barcelona, Spain, 12–15 December 2016; pp. 1149–1154. [Google Scholar]
- Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1725–1731. [Google Scholar]
- Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- Zhai, S.; Chang, K.; Zhang, R.; Zhang, Z.M. DeepIntent: Learning attentions for online advertising with recurrent neural networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1295–1304. [Google Scholar]
- Wang, R.; Fu, B.; Fu, G.; Wang, M. Deep Cross Network for Ad Click Predictions. In Proceedings of the ADKDD’17, New York, NY, USA, 14 August 2017. [Google Scholar]
- Edizel, B.; Mantrach, A.; Bai, X. Deep character-level click-through rate prediction for sponsored search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 305–314. [Google Scholar]
- Jaech, A.; Kamisetty, H.; Ringger, E.; Clarke, C. Match-Tensor: A Deep Relevance Model for Search. arXiv 2017, arXiv:1701.07795. [Google Scholar]
- Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W.; Zhou, C.; Zhu, X.; Gai, K. Deep Interest Evolution Network for Click-Through Rate Prediction. In Proceedings of the AAAI conference on artificial intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5941–5948. [Google Scholar] [CrossRef] [Green Version]
- Gligorijevic, J.; Gligorijevic, D.; Stojkovic, I.; Bai, X.; Goyal, A.; Obradovic, Z. Deeply supervised model for click-through rate prediction in sponsored search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 4–8 August 2019; pp. 1–22. [Google Scholar]
- Chen, J.; Zhao, Z.; Shi, J.; Zhao, C. A new approach for mobile advertising click-through rate estimation based on deep belief nets. Comput. Intell. Neurosci. 2017, 2017, 7259762. [Google Scholar] [CrossRef] [Green Version]
- Gan, M.; Xiao, K. R-RNN: Extracting user recent behavior sequence for click-through rate prediction. IEEE Access 2019, 7, 111767–111777. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, S.; Dai, W. A CTR prediction approach for text advertising based on the SAE-LR deep neural network. J. Inf. Process. Syst. 2017, 13, 1052–1070. [Google Scholar] [CrossRef]
- Li, H.; Duan, H.; Zheng, Y.; Wang, Q.; Wang, Y. A CTR prediction model based on user interest via attention mechanism. Appl. Intell. 2020, 50, 1192–1203. [Google Scholar] [CrossRef]
- Lu, Q.; Li, S.; Yang, T.; Xu, C. An adaptive hybrid XdeepFM based deep interest network model for click-through rate prediction system. PeerJ Comput. Sci. 2021, 7, e716. [Google Scholar] [CrossRef]
- Qiang, B.; Lu, Y.; Yang, M.; Chen, X.; Chen, J.; Cao, Y. SDeepFM: Multi-scale stacking feature interactions for click-through rate prediction. Electronics 2020, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Zhang, W.; Wu, X.; Jin, J.; Fang, Y.; Yu, Y. User Behavior Retrieval for Click-Through Rate Prediction. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, 25–30 July 2020. [Google Scholar] [CrossRef]
- Song, K.; Huang, Q.; Zhang, F.; Lu, J. Coarse-to-fine: A dual-view attention network for click-through rate prediction. Knowl.-Based Syst. 2021, 216, 106767. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Xing, S.; Zhao, X. A new approach for advertising ctr prediction based on deep neural network via attention mechanism. Comput. Math. Methods Med. 2018, 2018, 8056541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Wang, M.; Xie, Y. Optimally connected deep belief net for click through rate prediction in online advertising. IEEE Access 2018, 6, 43009–43020. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, B.; Shen, S.; Shen, F.; Zhao, J. Operation-aware neural networks for user response prediction. Neural Netw. 2020, 121, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Rendle, S. Factorization machines. In Proceedings of the 2010 IEEE 10th International Conference on Data Mining (ICDM), Sydney, Australia, 13–17 December 2010; pp. 995–1000. [Google Scholar]
- Rendle, S. Factorization machines with LIBFM. ACM Trans. Intell. Syst. Technol. 2012, 3, 57. [Google Scholar] [CrossRef]
- Lang, F.; Liang, L.; Huang, K.; Chen, T.; Zhu, S. Movie recommendation system for educational purposes based on field-aware factorization machine. Mob. Netw. Appl. 2021, 26, 2199–2205. [Google Scholar] [CrossRef]
- Wen, P.; Yuan, W.; Qin, Q.; Sang, S.; Zhang, Z. Neural attention model for recommendation based on factorization machines. Appl. Intell. 2021, 51, 1829–1844. [Google Scholar] [CrossRef]
- Juan, Y.; Zhuang, Y.; Chin, W.-S.; Lin, C.-J. Field-aware factorization machines for CTR prediction. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016. [Google Scholar]
- Zhang, L.; Shen, W.; Huang, J.; Li, S.; Pan, G. Field-aware neural factorization machine for click-through rate prediction. IEEE Access 2019, 7, 75032–75040. [Google Scholar] [CrossRef]
- Cheng, C.; Xia, F.; Zhang, T.; King, I.; Lyu, M.R. Gradient boosting factorization machines. In Proceedings of the 8th ACM Conference on Recommender systems, New York, NY, USA, 6–10 October 2014; pp. 265–272. [Google Scholar]
- Xiao, J.; Ye, H.; He, X.; Zhang, H.; Wu, F.; Chua, T.S. Attentional factorization machines: Learning the weight of feature interactions via attention networks. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 3119–3125. [Google Scholar]
- He, X.; Chua, T.S. Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 355–364. [Google Scholar]
- Blondel, M.; Fujino, A.; Ueda, N.; Ishihata, M. Higher-order factorization machines. In Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 3351–3359. [Google Scholar]
- Zhou, R.; Liu, C.; Wan, J.; Fan, Q.; Ren, Y.; Zhang, J.; Xiong, N. A Hybrid Neural Network Architecture to Predict Online Advertising Click-Through Rate Behaviors in Social Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3061–3072. [Google Scholar] [CrossRef]
- Zurko, M.E.; Simon, R.T. User-centered security. In Proceedings of the 1996 workshop on New security paradigms, Lake Arrowhead, CA, USA, 17–20 September 1996; pp. 27–33. [Google Scholar]
- Hassenzahl, M.; Tractinsky, N. User experience—A research agenda. In Behaviour & Information Technology; Informa UK Limited: London, UK, 2006; Volume 25, pp. 91–97. [Google Scholar] [CrossRef]
- Muntinga, D.G.; Moorman, M.; Smit, E.G. Introducing COBRAs: Exploring motivations for brand-related social media use. Int. J. Advert. 2011, 30, 13–46. [Google Scholar] [CrossRef]
- Kraus, L.; Wechsung, I.; Möller, S. Psychological needs as motivators for security and privacy actions on smartphones. J. Inf. Secur. Appl. 2017, 34, 34–45. [Google Scholar] [CrossRef]
- Voorveld, H.A.M.; van Noort, G.; Muntinga, D.G.; Bronner, F. Engagement with Social Media and Social Media Advertising: The Differentiating Role of Platform Type. J. Advert. 2018, 47, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Gaver, B.; Martin, H. Alternatives. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM Press: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Stolfo, S.J.; Salem, M.B.; Keromytis, A.D. Fog computing: Mitigating insider data theft attacks in the cloud. In Proceedings of the 2012 IEEE symposium on security and privacy workshops, San Francisco, CA, USA, 20–23 May 2012; pp. 125–128. [Google Scholar]
- Namasudra, S.; Devi, D.; Kadry, S.; Sundarasekar, R.; Shanthini, A. Towards DNA based data security in the cloud computing environment. Comput. Commun. 2020, 151, 539–547. [Google Scholar] [CrossRef]
- Ande, R.; Adebisi, B.; Hammoudeh, M.; Saleem, J. Internet of Things: Evolution and technologies from a security perspective. Sustain. Cities Soc. 2020, 54, 101728. [Google Scholar] [CrossRef]
- Chen, Q.; Bakare, S.; Verma, A.; Casasanta, C.; White, C.; Cotoranu, A.; Leider, A. Analyzing Expert Cybersecurity Twitter Accounts by Using Thesaurus Methods for Text Analytics. In Proceedings of the Student-Faculty Research Day, CSIS, Pace University, New York, NY, USA, 4 May 2018. [Google Scholar]
- Kabil, A.; Duval, T.; Cuppens, N. Alert Characterization by Non-Expert Users in a Cybersecurity Virtual Environment: A Usability Study. In Proceedings of the 7th International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Lecce, Italy, 8–11 June 2020. [Google Scholar] [CrossRef]
- Qi, G.; Li, P.; Carta, S. Deep Field-Aware Interaction Machine for Click-Through Rate Prediction. Mob. Inf. Syst. 2021, 2021, 5575249. [Google Scholar] [CrossRef]
- Song, W.; Shi, C.; Xiao, Z.; Duan, Z.; Xu, Y.; Zhang, M.; Tang, J. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM 2019), Beijing, China, 3–7 November 2019; pp. 1161–1170. [Google Scholar]
- Lian, J.; Zhou, X.; Zhang, F.; Chen, Z.; Xie, X.; Sun, G. xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19–23 August 2018; pp. 1754–1763. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damaševičius, R.; Zailskaitė-Jakštė, L. Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning. Electronics 2022, 11, 400. https://doi.org/10.3390/electronics11030400
Damaševičius R, Zailskaitė-Jakštė L. Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning. Electronics. 2022; 11(3):400. https://doi.org/10.3390/electronics11030400
Chicago/Turabian StyleDamaševičius, Robertas, and Ligita Zailskaitė-Jakštė. 2022. "Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning" Electronics 11, no. 3: 400. https://doi.org/10.3390/electronics11030400
APA StyleDamaševičius, R., & Zailskaitė-Jakštė, L. (2022). Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning. Electronics, 11(3), 400. https://doi.org/10.3390/electronics11030400