Compressed Complex-Valued Least Squares Support Vector Machine Regression for Modeling of the Frequency-Domain Responses of Electromagnetic Structures
Abstract
:1. Introduction
2. Problem Statement and Challenges
3. PCA Compression
4. Complex Valued Least-Square Support Vector Machine Regression
4.1. Complex-Valued Kernel
4.2. Dual Channel Kernel (DCK) LS-SVM for Complex-Valued Data
5. Application Examples
5.1. Example I
5.2. Example II
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manfredi, P.; Ginste, D.V.; Stievano, I.S.; de Zutter, D.; Canavero, F.G. Stochastic transmission line analysis via polynomial chaos methods: An overview. IEEE Electromagn. Compat. Mag. 2017, 6, 77–84. [Google Scholar] [CrossRef]
- Zhang, Z.; El-Moselhy, T.A.; Elfadel, I.M.; Daniel, L. Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2013, 32, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Spina, D.; Ferranti, F.; Dhaene, T.; Knockaert, L.; Antonini, G.; Ginste, D.V. Variability analysis of multiport systems via polynomial-chaos expansion. IEEE Trans. Microw. Theory Tech. 2012, 60, 2329–2338. [Google Scholar] [CrossRef]
- Ahadi, M.; Roy, S. Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2016, 35, 1640–1652. [Google Scholar] [CrossRef]
- Trinchero, R.; Manfredi, P.; Stievano, I.S.; Canavero, F.G. Machine Learning for the Performance Assessment of High-Speed Links. IEEE Trans. Electromagn. Compat. 2018, 60, 1627–1634. [Google Scholar] [CrossRef]
- Ma, H.; Li, E.; Cangellaris, A.C.; Chen, X. Support Vector Regression-Based Active Subspace (SVR-AS) Modeling of High-Speed Links for Fast and Accurate Sensitivity Analysis. IEEE Access 2020, 8, 74339–74348. [Google Scholar] [CrossRef]
- Treviso, F.; Trinchero, R.; Canavero, F.G. Multiple delay identification in long interconnects via LS-SVM regression. IEEE Access 2021, 9, 39028–39042. [Google Scholar] [CrossRef]
- Houret, T.; Besnier, P.; Vauchamp, S.; Pouliguen, P. Controlled Stratification Based on Kriging Surrogate Model: An Algorithm for Determining Extreme Quantiles in Electromagnetic Compatibility Risk Analysis. IEEE Access 2020, 8, 3837–3847. [Google Scholar] [CrossRef]
- Watson, P.M.; Gupta, K.C.; Mahajan, R.L. Development of knowledge based artificial neural network models for microwave components. IEEE Int. Microw. Symp. Baltim. 1998, 1, 9–12. [Google Scholar]
- Veluswami, A.; Nakhla, M.S.; Zhang, Q.-J. The application of neural networks to EM based simualtion and optimization of interconencts in high-speed VLSI circuits. IEEE Trans. Microw. Theory Techn. 1997, 45, 712–723. [Google Scholar] [CrossRef]
- Kumar, R.; Narayan, S.L.; Kumar, S.; Roy, S.; Kaushik, B.K.; Achar, R.; Sharma, R. Knowledge-Based Neural Networks for Fast Design Space Exploration of Hybrid Copper-Graphene On-Chip Interconnect Networks. IEEE Trans. Electromagn. Compat. 2021, 1–14, Early Access Article. [Google Scholar] [CrossRef]
- Swaminathan, M.; Torun, H.M.; Yu, H.; Hejase, J.A.; Becker, W.D. Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1276–1295. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, C.; Feng, F.; Na, W.; Ma, J.; Zhang, Q. Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters. IEEE Trans. Microw. Theory Tech. 2019, 67, 4140–4155. [Google Scholar] [CrossRef]
- Moradi, M.; Sadrossadat, A.; Derhami, V. Long Short-Term Memory Neural Networks for Modeling Nonlinear Electronic Components. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 1, 840–847. [Google Scholar] [CrossRef]
- Bourinet, J.-M. Reliability Analysis and Optimal Design under Uncertainty—Focus on Adaptive Surrogate-Based Approaches; Computation [stat.CO]; Université Clermont Auvergne: Clement Ferrand, France, 2018. [Google Scholar]
- Scardapane, S.; van Vaerenbergh, S.; Hussain, A.; Uncini, A. Complex-valued neural networks with nonparametric activation functions. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 4, 140–150. [Google Scholar] [CrossRef]
- Adali, T.; Schreier, P.J.; Scharf, L.L. Complex-valued signal processing: The proper way to deal with impropriety. IEEE Trans. Signal Processing 2011, 59, 5101–5125. [Google Scholar] [CrossRef]
- Papaioannou, A.; Zafeiriou, S. Principal Component Analysis with Complex Kernels, IEEE Transactions on Neural Networks and Learning Systems, 2013. pp. 1719–1726. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.3888&rep=rep1&type=pdf (accessed on 28 December 2021).
- Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Santos, I.; Pérez-Cruz, F. Widely linear complex-valued kernel methods for regression. IEEE Trans. Signal Processing 2017, 65, 5240–5248. [Google Scholar] [CrossRef]
- Tobar, F.A.; Kuh, A.; Mandic, D.P. A novel augmented complex valued kernel LMS. In Proceedings of the 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, 17–20 June 2012; pp. 473–476. [Google Scholar]
- Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Tsaftaris, S.A. The Generalized Complex Kernel Least-Mean-Square Algorithm. IEEE Trans. Signal Processing 2019, 67, 5213–5222. [Google Scholar] [CrossRef]
- Hirose, A. Complex-Valued Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bouboulis, P.; Theodoridis, S.; Mavroforakis, C.; Evaggelatou-Dalla, L. Complex Support Vector Machines for Regression and Quaternary Classification. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1260–1274. [Google Scholar] [CrossRef] [Green Version]
- Scardapane, S.; van Vaerenbergh, S.; Comminiello, D.; Uncini, A. Widely Linear Kernels for Complex-Valued Kernel Activation Functions. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8528–8532. [Google Scholar]
- Ogunfunmi, T.; Paul, T.K. On the complex kernel-based adaptive filter. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1263–1266. [Google Scholar]
- Boloix-Tortosa, R.; Murillo-Fuentes, J.J.; Payán-Somet, F.J.; Pérez-Cruz, F. Complex Gaussian processes for regression. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5499–5511. [Google Scholar] [CrossRef]
- Soleimani, N.; Trinchero, R.; Canavero, F. Application of Different Learning Methods for the Modelling of Microstrip Characteristics. In Proceedings of the 2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Shenzhen, China, 14–16 December 2020; pp. 1–3. [Google Scholar]
- Manfredi, P.; Grivet-Talocia, S. Compressed Stochastic Macromodeling of Electrical Systems via Rational Polynomial Chaos and Principal Component Analysis. In Proceedings of the 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Nusa Dua-Bali, Indonesia, 27–30 September 2021. [Google Scholar]
- Ahmadi, M.; Sharifi, A.; Fard, M.J.; Soleimani, N. Detection of brain lesion location in MRI images using 326 convolutional neural network and robust PCA. Int. J. Neurosci. 2021, 131, 1–12. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
- Manfredi, P.; Trinchero, R. A data compression strategy for the efficient uncertainty quantification of time-domain circuit responses. IEEE Access 2020, 8, 92019–92027. [Google Scholar] [CrossRef]
- Kushwaha, S.; Attar, A.; Trinchero, R.; Canavero, F.; Sharma, R.; Roy, S. Fast Extraction of Per-Unit-Length Parameters of Hybrid Copper-Graphene Interconnects via Generalized Knowledge Based Machine Learning. In Proceedings of the IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 17–20 October 2021. [Google Scholar]
- Suykens, J.A.K.; van Gestel, T.; de Brabanter, J.; de Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific Publishing Company: Singapore, 2002. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Posa, D. Parametric families for complex valued covariance functions: Some results, an overview and critical aspects. Spat. Stat. 2020, 39, 100473. [Google Scholar] [CrossRef]
- Iaco, D.S.; Palma, M.; Posa, D. Covariance functions and models for complex-valued random fields. Stoch. Environ. Res. Risk Assess. 2003, 17, 145–156. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Processing Syst. 2012, 25, 1–10. [Google Scholar]
- Geng, J.; Gan, W.; Xu, J.; Yang, R.; Wang, S. Support vector machine regression (SVR)-based nonlinear modeling of 354 radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization (RRN). Geo-Spat. Inf. Sci. 2020, 23, 237–247. [Google Scholar] [CrossRef]
- LS-SVMlab, Version 1.8 ed; Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven: Leuven, Belgium, 6 July 2011; Available online: https://www.esat.kuleuven.be/sista/lssvmlab/old/toolbox.html (accessed on 28 December 2021).
- Soh, W.-S.; See, K.-Y.; Chang, W.-Y.; Oswal, M.; Wang, L.-B. Comprehensive analysis of serpentine line design. In Proceedings of the 2009 Asia Pacific Microwave Conference, Singapore, 7–10 December 2009; pp. 1285–1288. [Google Scholar]
Training Ranges | Test Ranges |
---|---|
4.5 mm ≤ LL ≤ 5.1 mm | 4.5 mm ≤ LL ≤ 5.1 mm |
3.9 ≤ εr ≤ 4.5 | 3.9 ≤ εr ≤ 4.5 |
0.13 mm ≤ SW ≤ 0.17 mm | 0.13 mm ≤ SW ≤ 0.17 mm |
1 MHz ≤ f ≤ 3 GHz | 1 MHz ≤ f ≤ 3 GHz |
1000 samples for each frequency | 2000 samples for each frequency |
Training and Test Ranges | |
---|---|
C1 (x1) | (1 ± 0.5 x1) pF |
C2 (x2) | (0.5 ± 0.25 x2) pF |
L1 (x3) | (10 ± 5 x3) nH |
L2 (x4) | (10 ± 5 x4) nH |
i | 1,2,3,4 |
xi | Random variable in [−1, 1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimani, N.; Trinchero, R. Compressed Complex-Valued Least Squares Support Vector Machine Regression for Modeling of the Frequency-Domain Responses of Electromagnetic Structures. Electronics 2022, 11, 551. https://doi.org/10.3390/electronics11040551
Soleimani N, Trinchero R. Compressed Complex-Valued Least Squares Support Vector Machine Regression for Modeling of the Frequency-Domain Responses of Electromagnetic Structures. Electronics. 2022; 11(4):551. https://doi.org/10.3390/electronics11040551
Chicago/Turabian StyleSoleimani, Nastaran, and Riccardo Trinchero. 2022. "Compressed Complex-Valued Least Squares Support Vector Machine Regression for Modeling of the Frequency-Domain Responses of Electromagnetic Structures" Electronics 11, no. 4: 551. https://doi.org/10.3390/electronics11040551
APA StyleSoleimani, N., & Trinchero, R. (2022). Compressed Complex-Valued Least Squares Support Vector Machine Regression for Modeling of the Frequency-Domain Responses of Electromagnetic Structures. Electronics, 11(4), 551. https://doi.org/10.3390/electronics11040551